

Jerry Lee Ford, Jr.

Microsoft®

Windows®

PowerShell™

Programming
for the Absolute
Beginner

© 2007 Thomson Course Technology, a division of Thomson Learning

Inc. All rights reserved. No part of this book may be reproduced or

transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording, or by any information storage or

retrieval system without written permission from Thomson Course

Technology PTR, except for the inclusion of brief quotations in a

review.

The Thomson Course Technology PTR logo and related trade dress are

trademarks of Thomson Course Technology, a division of Thomson

Learning Inc., and may not be used without written permission.

Microsoft, Windows, and PowerShell are either registered trademarks

or trademarks of Microsoft Corporation in the United States and/or

other countries. Seinfeld is a copyright of Sony Pictures Entertainment.

All other trademarks are the property of their respective owners.

Important: Thomson Course Technology PTR cannot provide software

support. Please contact the appropriate software manufacturer’s

technical support line or Web site for assistance.

Thomson Course Technology PTR and the author have attempted

throughout this book to distinguish proprietary trademarks from

descriptive terms by following the capitalization style used by the

manufacturer.

Information contained in this book has been obtained by Thomson

Course Technology PTR from sources believed to be reliable. However,

because of the possibility of human or mechanical error by our

sources, Thomson Course Technology PTR, or others, the Publisher

does not guarantee the accuracy, adequacy, or completeness of any

information and is not responsible for any errors or omissions or the

results obtained from use of such information. Readers should be

particularly aware of the fact that the Internet is an ever-changing

entity. Some facts may have changed since this book went to press.

Educational facilities, companies, and organizations interested in

multiple copies or licensing of this book should contact the Publisher

for quantity discount information. Training manuals, CD-ROMs, and

portions of this book are also available individually or can be tailored

for specific needs.

ISBN-10: 1-59863-354-6

ISBN-13: 978-1-59863-354-2

Library of Congress Catalog Card Number: 2006907921

Printed in the United States of America

07 08 09 10 11 PH 10 9 8 7 6 5 4 3 2 1

Thomson Course Technology PTR,

a division of Thomson Course Technology

25 Thomson Place

Boston, MA 02210

http://www.courseptr.com

Publisher and General Manager,

Thomson Course Technology PTR:

Stacy L. Hiquet

Associate Director of Marketing:

Sarah O’Donnell

Manager of Editorial Services:

Heather Talbot

Marketing Manager:

Mark Hughes

Acquisitions Editor:

Mitzi Koontz

Marketing Coordinator:

Adena Flitt

Project Editor:

Jenny Davidson

Technical Reviewer:

Keith Davenport

PTR Editorial Services Coordinator:

Erin Johnson

Interior Layout:

Shawn Morningstar

Cover Designer:

Mike Tanamachi

Indexer:

Sharon Shock

Proofreader:

Kate Welsh

eISBN-10: 1-59863-792-4

http://www.courseptr.com

To my wonderful children, Alexander, William, and Molly,
and my beautiful wife, Mary.

This book represents the culmination of hard work from a number of individu-

als to whom I owe many thanks. For starters, there is Mitzi Koontz, for helping

me get this book started and for her support as acquisitions editor. I also owe a

special debt of gratitude to Jenny Davidson, who served as the book’s project/

copy editor and worked hard to help keep me straight and ensured that every-

thing came together like it was supposed to. Thanks also go out to Keith Davenport,

who as the book’s technical editor provided me with invaluable insight, guidance,

and advice. Finally, I’d like to thank everyone else at Thomson Course Technology

PTR for all their contributions and hard work.

Acknowledgments

Jerry Lee Ford, Jr. is an author, educator, and an IT professional with over 18

years of experience in information technology, including roles as an automation

analyst, technical manager, technical support analyst, automation engineer, and

security analyst. Jerry has a master’s degree in Business Administration from Vir-

ginia Commonwealth University in Richmond, Virginia. He is the author of 19

other books and co-author of two additional books. His published works include

Microsoft Windows Shell Scripting for the Absolute Beginner, Microsoft Windows Shell

Scripting and WSH Administrator’s Guide, Perl Programming for the Absolute Beginner,

VBScript Professional Projects, Microsoft Visual Basic 2005 Express Edition Programming

for the Absolute Beginner, Beginning REALbasic, Learn VBScript in a Weekend, Learn

JavaScript in a Weekend, and Microsoft Windows XP Professional Administrator’s Guide.

He has over five years’ experience as an adjunct instructor teaching networking

courses in Information Technology. Jerry lives in Richmond, Virginia, with his

wife, Mary, and their children, William, Alexander, and Molly.

About the Author

This page intentionally left blank

Introduction . xiii

Chapter 1 Introducing Windows PowerShell 3
Project Preview: The Knock Knock Joke Game . 4

Getting to Know Windows PowerShell . 7

A Little History Lesson . 7

Integration with .NET. 8

PowerShell Versus cmd.exe . 9

Installing and Configuring Windows PowerShell . 10

Interacting with the PowerShell Command Prompt . 12

Starting a New PowerShell Session . 13

Executing PowerShell Cmdlets. 13

Other Types of Commands . 16

A Short PowerShell Workout . 16

Windows PowerShell Scripting. 20

Simplifying PowerShell Script Execution. 20

Back to the Knock Knock Joke Game. 22

Designing the Game. 22

The Final Result. 26

Summary. 28

Chapter 2 Interacting with the Windows PowerShell
Command Line .31
Project Preview: The Story of the Three Amigos . 32

Accessing Windows PowerShell . 35

Customizing the Windows PowerShell Working Environment 36

Customizing Windows PowerShell Shortcuts. 36

Configuring the Windows Command Console. 38

Windows Command Console Customization Options 38

Windows Command Console Editing Features . 43

Windows PowerShell Edit Enhancements . 44

Tab Completion . 44

The Get-History Cmdlet . 46

Navigating Hierarchical Data Stores . 47

Contents

Back to The Story of the Three Amigos . 52

Creating a New Script . 53

Declaring Script Variables. 54

Displaying the Introduction. 54

Providing Player Instructions . 55

Prompting the Player for Input . 56

Collecting Additional Inputs . 57

Displaying the Story’s Opening . 58

Displaying the Rest of the Story . 59

Summary. 62

Chapter 3 Object-Based Scripting with .NET 63
Project Preview: The PowerShell Fortune Teller Game . 64

One Last PowerShell Customization Technique . 66

The Microsoft .NET Framework . 68

Key .NET Framework Components . 69

The .NET Class Library . 69

The Common Language Runtime . 70

Accessing .NET Framework Resources . 70

Executing Cmdlets . 75

Windows PowerShell Plumbing . 81

Working with Aliases . 84

Back to the PowerShell Fortune Teller Game . 87

Designing the Game. 87

Creating a New PowerShell Script. 88

Declaring and Initializing Variables. 88

Displaying the Welcome Screen . 89

Displaying Game Instructions . 90

Controlling Gameplay . 91

Displaying the Closing Screen . 93

Summary. 94

Chapter 4 Working with Variables, Arrays, and Hashes . .99
Project Preview: The Seinfeld Trivia Quiz . 100

Windows PowerShell Language Features . 102

Windows PowerShell Reserved Words . 102

Escape Characters . 103

String Manipulation. 105

viii Windows PowerShell Programming for the Absolute Beginner

Storing and Retrieving Data . 107

Variables . 107

Arrays . 114

Associative Arrays . 118

Back to the Seinfeld Trivia Quiz. 121

Designing the Game. 121

The Final Result. 131

Summary . 131

Chapter 5 Implementing Conditional Logic 133
Project Preview: The Guess My Number Game . 134

Comparing Values . 136

Combining Pipelines and Operators . 137

Implementing Conditional Logic. 138

Comparing Data Using the if Statement . 139

Making Multiple Comparisons Using the switch Statement. 144

Windows PowerShell Operators . 146

Comparison Operators . 146

Logical Operators . 147

String Comparison Operators. 148

Back to the Guess My Number Game . 150

Designing the Game. 150

The Final Result. 157

Summary . 162

Chapter 6 Using Loops to Process Data 163
Project Preview: The Rock, Paper, Scissors Game . 164

Working with Loops . 166

Setting Up do while Loops . 167

Setting Up do until Loops . 168

Creating for Loops. 169

Creating foreach Loops . 172

Using while Loops . 175

Altering Loop Execution. 176

Using the break Command. 176

Using the continue Command. 177

Back to the Rock, Paper, Scissors Game . 178

Designing the Game. 179

The Final Result. 188

Summary . 188

ixContents

Chapter 7 Organizing Scripts Using Functions 191
Project Preview: The PowerShell Hangman Game . 192

Changing Script Design Using Functions and Filters . 194

Improving Script Organization . 195

Creating Reusable Code. 195

Enhancing Script Organization with Functions. 196

Function Structure . 196

Processing Arguments . 198

Processing Incoming Data . 203

Returning a Result . 204

Restricting Variable Scope . 205

Replacing Functions with Filters . 207

Back to the PowerShell Hangman Game . 208

Creating a New Script . 209

Defining and Initializing Script-Level Variables . 209

Defining Custom Functions . 210

Prompting the Player to Start the Game . 212

Setting Up a Loop to Control Gameplay . 213

Selecting a Secret Word. 213

Setting Up a Loop to Process User Guesses . 214

Collecting and Validating User Input. 214

Displaying the Results of Each Guess . 216

Determining When the Game Is Over . 217

Challenging the Player to Play Another Game. 219

Summary. 220

Chapter 8 Working with Files and Folders 225
Project Preview: The PowerShell Tic-Tac-Toe Game . 226

Using the Power of Regular Expressions . 228

Matching Simple Patterns. 228

Matching Alternative Patterns . 229

Working with Regular Expression Characters . 229

Working with Quantifiers . 231

Matching Patterns Based on Ranges . 231

Administering Files and Folders . 233

Verifying File and Folder Existence. 233

Retrieving File and Folder Information . 234

Copying and Moving Files and Folders . 235

Deleting Files and Folders. 236

x Windows PowerShell Programming for the Absolute Beginner

Renaming Files and Folders . 237

Searching Files. 237

Reading from and Writing to Files . 238

Creating Files and Folders . 238

Writing to Text Files. 239

Reformatting Cmdlet Output . 240

Reading from Text Files. 244

Erasing File Contents . 245

Saving Data Output as HTML . 245

Saving Data as an XML File. 245

Reading Data from an XML File. 247

Saving Data in a Comma-Separated Value File. 247

Reading Data from a Comma-Separated Value File. 248

Sending Output to the Printer . 249

Back to the PowerShell Tic-Tac-Toe Game . 250

Designing the Game. 250

The Final Result. 263

Summary. 264

Chapter 9 Basic System Administration 265
Project Preview: The PowerShell Blackjack Game . 266

Accessing and Administering System Resources . 268

Listing and Stopping Processes . 268

Administering Windows Services . 269

Accessing Event Logs . 274

Retrieving System Information Using WMI . 276

Taking Advantage of .NET Classes. 281

Taking Advantage of COM Objects . 281

Programmatically Interacting with the Windows Registry. 284

Back to the PowerShell Blackjack Game . 288

Creating a New Script File . 288

Defining and Creating New Variables . 289

Creating the Get-Permission Function. 289

Creating the Check-Registry Function . 291

Creating the Play-Game Function . 292

Creating the Deal-Hand Function . 292

Creating the Get-Card Function . 293

Creating the Get-ComputerHand Function. 293

Creating the Analyze-Results Function . 294

xiContents

Creating the Get-PlayerHand Function . 295

Creating the Get-NewCard Function . 297

Adding Controlling Logic to the Main Processing Section 297

Summary. 298

Chapter 10 Debugging PowerShell Scripts 301
Project Preview: The PowerShell Game Console . 302

Understanding PowerShell Errors . 303

Syntax Errors . 303

Runtime Errors . 304

Logical Errors. 305

Terminating Versus Non-Terminating Errors . 306

Dissecting the Structure of Error Messages . 306

Telling Windows PowerShell How to React to Errors . 307

Creating Trap Handlers . 308

Tracing Script Execution . 311

Displaying Output Status Information and Tracking Variable Values . . . 311

Using PowerShell’s Debug Mode . 313

Back to the PowerShell Game Console . 316

Designing the Game. 316

The Final Result. 322

Summary. 322

Appendix A What’s on the Companion Website?325

Appendix B What Next? .327
Windows PowerShell IDEs . 328

Recommended Reading . 329

Locating Microsoft PowerShell Resources Online . 330

PowerShell Websites . 331

Windows PowerShell News Group . 332

PowerShell Blogs . 333

The Author’s Website . 334

Glossary .335

Index .345

xii Windows PowerShell Programming for the Absolute Beginner

Introduction

W
elcome to Microsoft Windows PowerShell Programming for the Absolute Beginner.

Windows PowerShell is a next-generation command shell for Microsoft

operating systems. A command shell or shell is a text-based interface that

sits between the user and the operating system, which most people loosely refer

to as the command prompt. In the case of the Windows PowerShell, the shell is

both a user interface and a new scripting language, both of which have been

redesigned from the ground up to facilitate the secure administration of Windows

operating systems.

The goal of this book is to teach you everything you need to know in order to

begin developing your own Windows PowerShell scripts. This will, of course,

include learning how to interact with the Windows PowerShell command line. It

will also involve learning a little about Microsoft’s .NET Framework. At the same

time, you learn how to work with other Windows technologies, such as the

Windows registry, as you learn how to become a PowerShell programmer.

Why Windows PowerShell Scripting?
Windows PowerShell is a next-generation command shell developed by Microsoft

to run on its latest generation of Windows operating systems. As a shell, you

interact with Windows PowerShell from the command line. One of the things

that makes the PowerShell different from cmd.exe, the previous Windows com-

mand shell, is that PowerShell has been redesigned as an object-based environ-

ment that is tightly integrated with Microsoft’s .NET Framework. As such, the

PowerShell is far more powerful and advanced than its predecessor. At the same

time, Microsoft worked hard to make Windows PowerShell backward compatible.

The Windows shell will accept and process the same commands as the previous

Windows shell, thus preserving any knowledge and experience you may already

bring with you while also introducing you to a whole new set of capabilities.

Microsoft provides the Windows PowerShell as a free add-on to Windows operat-

ing systems. Its new scripting language has been designed from the ground up to

support object-based programming, thus providing systems administrators and

computer hobbyists with a tool for automating just about any Windows activity.

Introduction

Windows PowerShell makes for a great starter language for first-time programmers and hob-

byists. Professional programmers will also benefit from this new scripting technology,

which provides more robust and powerful scripting capabilities than that provided by any

other Windows scripting language. You will find that more often than not, you can develop

scripts to automate a given task much more quickly and efficiently using the Windows

PowerShell than can be done using other scripting languages, thus saving valuable time and

freeing you up to move on to tackle other tasks.

In short, whether you are interested in learning your first programming language or are

looking for an introduction to PowerShell scripting that teaches you how to develop Power-

Shell scripts with which you can leverage your existing knowledge of .NET programming,

this book should serve you well. If Windows is your operating system of choice, Windows

PowerShell scripting provides you with access to a scripting environment that is unmatched

by other scripting languages. In addition, learning Windows PowerShell scripting will pro-

vide you with a programming background from which you can then make the jump to other

.NET programming languages.

This book will teach you Windows PowerShell scripting. To help make learning fun and

interesting, you will learn how to program through the development of computer games. By

the time you have finished this book, not only will you have access to a collection of work-

ing sample scripts, but you also will have laid a foundation upon which you can move on

and begin to tackle real-world challenges.

Who Should Read This Book?
My goals in writing this book are to show you how to interact with the Windows PowerShell,

to teach you the fundamentals of how to develop and execute PowerShell scripts, and to help

you become an effective programmer. I do not make any assumptions regarding your previ-

ous programming experience, although prior programming experience is obviously helpful.

I do, however, expect you to have a working familiarity with Windows.

I think that you will find this book’s unique approach of teaching through the development

of computer games both entertaining and highly productive. Learning through the creation

of computer games not only helps keep things fun but it also provides a unique opportunity

to experiment with a programming language.

If you are a first-time programmer or a computer hobbyist, you should find this book’s sys-

tematic building block approach to programming very helpful, allowing you to master basic

fundamentals before moving on to more advanced topics. By investing your time and energy

in learning how to program using Windows PowerShell scripting, you will develop a pro-

gramming foundation that translates well to other scripting languages such as VBScript,

xiv Windows PowerShell Programming for the Absolute Beginner

JavaScript, Python, and Perl, as well as .NET programming languages such as C#, C++, and

Visual Basic. Professional programmers will also benefit from this book by using it as a

quick start guide to PowerShell scripting.

What You Need to Begin
In order to work with Windows PowerShell, your computer must run one of the following

operating systems.

• Windows XP

• Windows Server 2003

• Windows Vista

When writing this book, I worked on a computer running Windows XP. Therefore, all of the

figures and examples that you will see were generated on that particular operating system.

However, everything you see should apply to Windows Server 2003 and Windows Vista as well.

In addition to running a supported operating system, your computer must also have

Microsoft .NET Framework version 2.0 or higher installed. As of the writing of this book,

Windows PowerShell was a free download provided by Microsoft and could be downloaded

and installed from the Microsoft PowerShell website located at

www.microsoft.com/windowsserver2003/technologies/management/powershell/default.mspx.

If necessary, you can get the latest version of .NET by going to msdn.microsoft.com/

netframework/.

Beyond a supported version of Windows, .NET 2.0, and a copy of Windows PowerShell, you

do not need anything else to get started or to perform all the exercises outlined in this book.

Of course, you will need a text editor of some type with which you will create and save

PowerShell script files. For starters, you can user the Windows Notepad application. However,

you may find it beneficial to download and install a code editor that is specifically designed

to support PowerShell script development. If you skip ahead to Appendix B, “What Next?,”

you will find information about two such applications, both of which were free as of the

time of this writing.

How This Book Is Organized
As I sat down and designed the overall structure of this book, I did so with the intention that

it be read from cover to cover. However, if you have prior programming experience, you may

instead choose to read this book by going through the first two chapters in order to learn a

few specifics about working with Windows PowerShell. You might then jump around a bit to

xvIntroduction

www.microsoft.com/windowsserver2003/technologies/management/powershell/default.mspx

different chapters based on your specific needs and experience. However, Windows PowerShell

comes equipped with an entirely new programming language. As such, it is probably a good

idea that you spend some time reading Chapters 4 through 7, which cover the basics of the

Windows PowerShell scripting language.

Windows PowerShell Programming for the Absolute Beginner is organized into four parts. Part I is

made up of three chapters that focus on providing you with an introduction to the Power-

Shell and its capabilities. These chapters outline the basic steps involved in interacting with

the PowerShell command prompt and in creating and executing PowerShell scripts, and

they provide an overview of object-based scripting and the PowerShell’s relationship with

the .NET Framework.

The second part consists of four chapters, which together provide you with a review of the

PowerShell scripting language. Each chapter focuses on a different collection of topics. You

will learn how to store and retrieve data. You will also learn how to implement conditional

logic and to set up loops in order to automate repetitive tasks and process large collections

of data. Lastly, you will learn how to improve the overall organization of your PowerShell

scripts using functions.

The third part is made up of three chapters, each of which covers an advanced topic. These

topics include learning how to work with files and folders, developing PowerShell scripts to

automate system administration tasks, and learning how to track down and debug errors.

Finally, The fourth part consists of two appendices and a glossary. The appendices address

the material that you will find on this book’s companion website as well as provide you with

suggestions on where you can go online to learn more about Windows PowerShell. Lastly,

the glossary provides access to a comprehensive list of terms used throughout the book.

A detailed review of the information provided by each chapter of this book is provided here.

• Chapter 1, “Introducing Windows PowerShell.” This chapter provides you with an

introductory overview of the Windows PowerShell. You will learn about the different

technologies that make up and support Windows PowerShell, including object-oriented

programming and the .NET Framework. You will also learn how to start the PowerShell

and to interact with it using commands and cmdlets. In addition, you will learn how

to configure the PowerShell to run scripts and to develop and execute your first

PowerShell script.

• Chapter 2, “Interacting with the Windows PowerShell Command Line.” This chapter

provides a thorough review of how to interact with the Windows PowerShell command

line and how to work with its built-in cmdlets. You will also learn to access help

information and to formulate command input.

xvi Windows PowerShell Programming for the Absolute Beginner

• Chapter 3, “Object-Based Scripting with .NET.” Windows PowerShell requires .NET

in order to execute. This chapter provides an overview of .NET and its relationship to

Windows PowerShell. You will learn about the .NET class library and how to work

with structured objects.

• Chapter 4, “Working with Variables, Arrays, and Hashes.” This chapter’s primary

focus is to show you different ways that you can store and retrieve data. This will

include learning how to define and access variables, arrays, and hashes. You will also

learn how to work with PowerShell’s special variables.

• Chapter 5, “Implementing Conditional Logic.” In this chapter you will learn how

to apply conditional logic in order to analyze data and selectively choose between

different logical execution paths. You will learn how to evaluate strings, numbers,

and Boolean data.

• Chapter 6, “Using Loops to Process Data.” This chapter shows you how to create

loops in order to efficiently execute commands over and over again, thus facilitating

the processing of large amounts of data. You will also learn how to conditionally

break out of loops when predetermined conditions occur.

• Chapter 7, “Organizing Scripts Using Functions.” This chapter introduces you to

functions and explains how to use them to improve the overall organization and

readability of your PowerShell script files. This includes learning how to call on

functions for execution as well as how to pass arguments to functions for processing

and to set up functions to return data back to calling statements.

• Chapter 8, “Working with Files and Folders.” This chapter will teach you how to

interact with and control files, folders, and disks. You will learn how to open and

close files and to read and write information to and from them.

• Chapter 9, “Basic System Administration.” The primary focus of this chapter is to

demonstrate how to develop PowerShell scripts that automate various system admin-

istration tasks, such as how to access system information and network resources. In

addition, you will learn how to interact with the Windows registry.

• Chapter 10, “Debugging PowerShell Scripts.” This chapter focuses on teaching you

how to track down and fix any error that may occur as you work on your PowerShell

scripts. The topics covered include how to trap and recover from errors, how to pause

script execution by establishing breakpoints, and how to trace script execution using

debug mode.

• Appendix A, “What’s on the Companion Website?” This appendix provides a review of

the materials that can be found on this book’s companion website (www.courseptr.com/

downloads). This material includes copies of all the PowerShell game scripts covered

in this book.

xviiIntroduction

www.courseptr.com/downloads
www.courseptr.com/downloads

xviii Windows PowerShell Programming for the Absolute Beginner

IN THE REAL WORLD
Explanations and demonstrations of how certain programming techniques are applied to solve
specific real-world problems.

• Appendix B, “What Next?” This appendix is designed to provide you with suggestions

and tips for furthering your Windows PowerShell scripting education. It includes

suggestions for additional reading and points you to various PowerShell resources

available on the Internet, including PowerShell IDEs, user groups, and blogs.

• Glossary. This unit provides a glossary of terms used throughout the book.

Conventions Used in This Book
In order to help you get the most out of this book and to help organize the material in an

efficient and comprehensive manner, I have implemented a number of conventions that

will help with the overall organization and presentation of this book’s material. These con-

ventions are outlined below.

HINT. Suggestions and ideas for different ways things can be done in order
to help you become a better and more efficient Windows PowerShell
programmer.

TRAP. Situations where mistakes and errors often are made and advice on
how to deal with these situations.

TRICK. Tips, tricks, and programming shortcuts that you can use to work
faster and more efficiently.

TRICK

TRAP

HINT

C H A L L E N G E S

At the end of each chapter, you will learn how to create a new computer game. I will
then present you with a series of suggestions to follow up on in order to further
enhance and improve both the chapter game project and your programming skills.

Part

Chapter 1: Introducing Windows
PowerShell

Chapter 2: Interacting with the
Windows PowerShell
Command Line

Chapter 3: Object-Based Scripting
with .NET

Windows PowerShell Basics

I

This page intentionally left blank

Introducing
Windows PowerShell

1
C H A P T E R

W
indows PowerShell is a next-generation command shell that runs on

Windows XP, Windows 2003, and Windows Vista. As a command shell,

PowerShell provides a command-line interface that administrators and

computer hobbyists can use to directly interact with and control the Windows

operating system. PowerShell also includes its own scripting language that has

been custom designed to interact with Microsoft’s .NET Framework and to take

advantage of the resources that .NET provides. In this chapter, I will introduce

you to PowerShell and PowerShell scripting. This will include learning how to

install and configure the shell as well as how to use it to execute commands and

run your first PowerShell script. By the end of this chapter, you will have created

your first PowerShell script game and have a good understanding of the steps

involved in working with PowerShell and creating and executing PowerShell scripts.

Specifically, you will learn:

• A little bit about PowerShell’s history

• How to install PowerShell and configure it to run scripts

• About the basic components that make up PowerShell

• About cmdlets and how to use them to formulate commands and

script statements

• How to get help regarding different PowerShell commands

C H A P T E R

Project Preview: The Knock Knock Joke Game
In this chapter and in each chapter that follows, you will learn how to create a computer

game using Windows PowerShell scripting. In this first game, you will create a script that

tells several knock knock jokes. The script is designed to interact with the user by prompt-

ing the user to enter input at appropriate moments.

The game begins by clearing the screen and then displaying a prompt that says Knock Knock!,

as shown in Figure 1.1.

As a response, the user is expected to enter the string Who is there?, exactly as shown in

Figure 1.2.

4 Windows PowerShell Programming for the Absolute Beginner

Figure 1.1

The Knock Knock
Joke game begins
by prompting the

user to guess
who is there.

Figure 1.2

The user must
respond by typing

the string Who
is there?.

If the user types anything other than Who is there?, the script will continue to prompt the

user until he responds correctly, as demonstrated in Figure 1.3.

Once the user provides the correct response, the game responds with an answer of “Orange.”

In response, the player is required to enter the string Orange who?, as demonstrated in

Figure 1.4.

Next, the script displays the joke’s punch line, as shown in Figure 1.5.

5Chapter 1 • Introducing Windows PowerShell

Figure 1.3

If necessary, the
game will

continue to
prompt the user

to respond
correctly.

Figure 1.4

The player is
required to

respond
Orange who?.

6

The game displays the punch line for five seconds before clearing the screen and starting

the process of telling another joke. In total, the game tells three jokes, pausing for five sec-

onds at the end of each joke to display a punch line. Finally, once the last joke has been told,

the information shown in Figure 1.6 is displayed for three seconds, after which the screen

is cleared and the PowerShell command is redisplayed.

Now that you have had a quick preview of the operation of the Knock Knock Joke game, let’s

spend a little time learning more about PowerShell and PowerShell scripting. After this, we’ll

turn our attention back to the development of the game script at the end of the chapter.

Windows PowerShell Programming for the Absolute Beginner

Figure 1.5

Finally, the joke’s
punch line is

displayed.

Figure 1.6

The script ends
by displaying

information about
itself and its

author.

Getting to Know Windows PowerShell
Most operating systems’ command shells consist of a small number of internal commands,

which the shell runs internally when executed. Because the number of commands provided

by traditional shells is limited, large numbers of utility programs (or external commands)

are later developed to supplement built-in shell commands in order to provide missing func-

tionality. These utility programs run outside of the shell, generating their own processes.

These utility programs may or may not support a command syntax that is similar to that of

its associated command shell. The end result is a command line and shell scripting envi-

ronment that is inconsistent and difficult to learn due to syntax inconsistencies.

Throughout this book, the terms Windows PowerShell and PowerShell are used
interchangeably.

Enter the Windows PowerShell, which provides access to well over one hundred commands

in the form of cmdlets, each of which shares a common syntax, making the command line

and scripting environment far more predictable and easy to learn. When developing Win-

dows PowerShell, one of Microsoft’s goals was to make the learning curve for PowerShell as

easy as possible. Therefore, it incorporated as many cmd.exe and UNIX shell features as it

could into Windows PowerShell.

Windows PowerShell has many other features that further differentiate it from traditional

command shells. These features include:

• A C#-styled syntax

• Access to over one hundred cmdlets providing access to .NET Framework classes

• Support for regular expressions

• A provider model that provides Windows PowerShell with access to hierarchical

repositories including the Windows file system and the Windows registry

• The ability to shorten commands and script statements by supplying abbreviated

forms of keywords

A Little History Lesson
Going all the way back to the first version of Windows, every version of Windows has

included a command shell. The original command-line shell was named Command.com.

When Windows NT was released, Microsoft added cmd.exe as the operating system’s new

command shell. cmd.exe remained the Windows command shell when both Windows

HINT

7Chapter 1 • Introducing Windows PowerShell

8 Windows PowerShell Programming for the Absolute Beginner

2000 and Windows XP were released. As much of an improvement as cmd.exe was over

Command.com, it never provided the kind of comprehensive access to the Windows operat-

ing systems that, for example, UNIX and Linux users and administrators are accustomed to.

Windows has successfully made the leap from the Windows desktop to become a major

player in corporate data centers all around the world. However, its lack of a world-class shell

has plagued Windows administrators. When Microsoft released the Windows Script Host, or

WSH, in 1998, things improved significantly. Using the WSH, Windows administrators could

develop automation scripts using either VBScript or JScript. Later, third-party developers

released WSH-compatible scripting languages that included Perl, Rexx, and Python. Still,

when compared to UNIX, command-line access has continued to remain a major deficiency

for Windows.

By creating Windows PowerShell and providing it with an entirely new scripting language,

capable of accessing resources provided by the .NET Framework, Microsoft has provided

Windows users and administrators with access to a command shell that now has access to

resources formerly only available to GUI-based programming languages like Visual Basic .NET.

Integration with .NET
Unlike traditional command shells, which manipulate text, Windows PowerShell treats

everything as objects. An object is a self-contained resource that stores information about

itself in properties and provides program code, in the form of methods, that can be used to

interact with it. For example, a file is an object. So is a disk drive and a folder.

All objects are derived from a class that defines the object and its properties and methods.

An object’s properties describe particular features of the object. For example, a file has a

name, a file extension, and a file size, among many other properties. Objects also have built-

in collections of code, referred to as methods, which can be programmatically called upon to

access and interact with objects. For example, files can be opened, read from, written to,

closed, and deleted.

The .NET Framework provides the Windows PowerShell with access to a huge library of

classes. The .NET Framework class library is a hierarchical collection of classes that defines

the data type of objects that can be instantiated using the classes as templates. Within the

framework, classes are often based on other classes, creating parent and child relationships.

A child class (or subclass) inherits base object definitions from its parent class and includes

its own modifications. These classes and subclasses are made available to the PowerShell in

the form of cmdlets, which are built-in commands that provide access to specific system

resources.

Classes, objects, properties, and methods can be difficult for new programmers
to understand. To help make them easier to understand, consider the following
analogy: A car manufacturer might have a library of blueprints (class library)
which are used in the making of new cars. An individual blueprint (class) defines
everything required to create a new type of car (object).

Individual cars are created or instantiated based on the blueprint. For example,
a car company might have a master set of blueprints for building a particular
model of a car. Using this one blueprint (class), the car company can create
(instantiate) as many new cars (objects) as it wishes. By default, each car pro-
duced using the same class has the same set of properties and methods. Each
car that is created from the same blueprint inherits a predefined set of attribut-
es (properties). For example, every car has a color. By modifying the value of its
color property, each car or object can be given a different color.

If the car company wants, it can pay an engineer to create a new set of blue-
prints for a new car, using the other set of blueprints as a starting point. As a
result, the new set of blueprints would represent a subclass of the parent class
and any new cars created from the new set of blueprints, though similar to cars
created by the parent class, would have their own unique subset of shared
properties and methods.

A basic understanding of objects is essential for any Windows PowerShell programmer

because the PowerShell interacts with objects in just about everything it does. As such,

Windows PowerShell scripting is often referred to as an object-based scripting language. It

is called an object-based scripting language because, unlike object-oriented programming

languages, PowerShell programmers typically work with objects that have already been cre-

ated as opposed to defining and creating entirely new objects themselves. That is not to say

that a PowerShell programmer cannot create new objects; it is just not something that is

commonly needed.

PowerShell Versus cmd.exe
On the surface there are many similarities between cmd.exe and the PowerShell. As far as

everyday tasks go, you should be able to use the PowerShell in place of cmd.exe. However,

under the covers, PowerShell is many times more advanced than its predecessor. As has

already been stated, PowerShell has direct access to resources provided by the .NET Frame-

work and a brand new scripting language specifically designed to support interaction with

.NET resources via cmdlets.

Another difference between the manner in which cmd.exe and PowerShell execute is the

manner in which data is passed between commands. Both shells support the use of pipes to

move data between commands. However, the type of data moved is completely different.

TRICK

9Chapter 1 • Introducing Windows PowerShell

10 Windows PowerShell Programming for the Absolute Beginner

A pipe is a logical connection between two commands that supports the
passage of one command’s output to another command where it is received
as input.

With cmd.exe, data is passed as text. Unfortunately, the output of one command often does

not come back in a format required by the second command. As such, shell script program-

mers typically have to add additional programming logic to their scripts to reformat one

command’s output into a format the other command can accept. Window PowerShell uses

an object pipeline that allows the receiving cmdlets to access properties and methods of

objects generated by other cmdlets. With object piping, the programmer is relieved of the

responsibility of formatting object data, significantly simplifying the scripting process.

Table 1.1 lists a number of additional key differences between cmd.exe and PowerShell. As

you can see, Windows PowerShell boasts many key improvements, which you will learn

more about as you work your way through this book.

Installing and Configuring Windows PowerShell
In order to install Windows PowerShell, your computer must meet the following require-

ments.

• Your computer must be running Windows XP, Windows 2003, or Windows Vista

• Microsoft .NET Framework must be installed

HINT

Feature cmd.exe PowerShell

Regular Expressions No Yes

Exception Handling No Yes

Array Support No Yes

Functions No Yes

Script Signing No Yes

Tab Completion Limited Yes

TA B L E 1.1 K E Y W I N D O W S S H E L L D I F F E R E N C E S

As of the writing of this book, Windows PowerShell was a free download provided by

Microsoft and could be downloaded and installed from the Microsoft PowerShell website, located

at http://www.microsoft.com/windowsserver2003/technologies/management/powershell/

default.mspx

Windows PowerShell downloads as a self-extracting executable that you can install by double-

clicking on it. If your computer is not already running version 2.0 or higher of the .NET

Framework, you must download and install it before you can install and run Windows

PowerShell. If you attempt to install Windows PowerShell without .NET installed, you will

see a popup dialog message instructing you to install it and the Windows PowerShell instal-

lation process will stop.

If necessary, you can get .NET by going to http://msdn.microsoft.com/netframework and

downloading it. Once .NET has been installed, you can install Windows PowerShell. The

install of PowerShell does not take long and ends with the addition of the Windows Power-

Shell group on the All Programs menu, as demonstrated in Figure 1.7.

Although Microsoft markets the Windows PowerShell as a secure environment for both

command-line execution and scripting, the addition of a new shell and scripting language

opens up the potential for exploitation by hackers. As such, Microsoft forces you to explic-

itly decide whether you trust Microsoft as a publisher of PowerShell scripts. Your choices are

• [D] Do not run

• [R] Run once

• [A] Always run

• [?] Help

Responding by entering A and pressing the Enter key allows you to run PowerShell scripts

developed by Microsoft. Another security feature implemented by Microsoft is the inability

to run scripts by double-clicking on them from the Windows desktop. Microsoft also forces

you to make one more decision before you can start running PowerShell script files on your

11Chapter 1 • Introducing Windows PowerShell

Figure 1.7

Determining
whether to trust
scripts provided

by Microsoft.

http://www.microsoft.com/windowsserver2003/technologies/management/powershell/default.mspx
http://www.microsoft.com/windowsserver2003/technologies/management/powershell/default.mspx
http://msdn.microsoft.com/netframework

12

computer by establishing an execution policy that permits PowerShell scripts to run at one

of three security levels, as outlined below.

• Allsigned. Only permits scripts that have a trusted signature to execute on your

computer.

• Remotesigned. Permits PowerShell scripts downloaded from the web to run only if

they are from a trusted source.

• Unrestricted. Allows any PowerShell script to run on your computer.

Before PowerShell will allow you to run your first PowerShell script, you will need to set one

of Windows PowerShell’s execution policy settings. For example, to allow any PowerShell

script to run on your computer, you would enter the following command at the PowerShell

command prompt.

Set-Executionpolicy Unrestricted

Your choice of what execution policy to set should be based on your scripting
needs and security requirements. If you decide later that you want to change
your Windows PowerShell execution policy, you may do so at any time by
re-executing the Set-Executionpolicy command and passing it one of the
options listed above.

Interacting with the PowerShell Command Prompt
The Windows PowerShell provides programmers with access to well over 100 cmdlets

(pronounced command-lets), each of which is a .NET class that provides access to specific

system resources. Like traditional command shells, the Windows PowerShell uses pipelines

to pass data between cmdlets; however, instead of passing data as text, data is passed as

objects. The inherent advantages of this approach include:

• When accessed from the command line, data is returned and displayed as text

• When data is passed from cmdlet to cmdlet, it is passed as objects or structured data

• Data passed between cmdlets is automatically converted into any format that is

appropriate based on the current situation

Cmdlets also share access to a universal set of options. These options provide you with the

ability to specify how errors are handled as well as to run cmdlets using a –WHATIF option

that lets you see the effect that a command would have without actually making any

changes. Cmdlets also support a –CONFIRM option that allows you to prompt the user for

approval before execution within scripts.

HINT

Windows PowerShell Programming for the Absolute Beginner

13Chapter 1 • Introducing Windows PowerShell

Windows PowerShell cmdlets use a naming syntax that consists of verb-noun pairs. The verb

is always on the left-hand side and is separated from the noun by a hyphen. The verb

describes the action that is to take place and the noun identifies the target to be acted upon.

Nouns are specified in a singular form. For example, the Get-* verb is a universal verb used

to retrieve resources such as objects and properties. Using the Get-* verb and the Property

noun, you could, for example, retrieve information about a given object’s properties (e.g.,

Get-Property).

By combining the Get-* verb with the Help noun, you can execute the Get-Help cmdlet to get

help on any cmdlet. For example, Figure 1.8 demonstrates how to use the Get-Help cmdlet,

which retrieves information about other cmdlets, to get information about the Read-Host

cmdlet.

Starting a New PowerShell Session
To start a new Windows PowerShell session, select on Start > All Programs > Windows

PowerShell. A new Windows command console is opened and the Windows PowerShell com-

mand prompt is displayed, as demonstrated in Figure 1.9.

Executing PowerShell Cmdlets
You interact with the PowerShell by submitting commands at the command prompt, which

typically looks something like PS C:\>, as demonstrated in Figure 1.10. PS is simply an abbre-

viation for PowerShell. C:\ represents the current working directory, and the > character

Figure 1.8

Examining help
information about

the Read-Host
cmdlet.

14

indicates that PowerShell is ready to receive input. You enter commands for PowerShell to

process by typing them in and pressing Enter. What happens next depends on the command

you entered. By default, any command you type is processed and any output is returned as

text, as demonstrated in Figure 1.10.

The command executed in Figure 1.10 is the Get-Childitem cmdlet, which retrieves the con-

tents of a folder. Since a path was not specified, the current working directory was used. In

order to help users and administrators make the transition to working with Windows

PowerShell as easy as possible, Microsoft has developed a collection of cmdlet aliases that

can be used in place of actual cmdlet names. Within the Windows PowerShell, an alias is a

link to a particular cmdlet. In many cases, Microsoft has created multiple aliases for a given

cmdlet. For example, since a user or administrator may find it difficult at first to remember

Windows PowerShell Programming for the Absolute Beginner

Figure 1.9

Access to the
PowerShell is
provided via

the Windows
command
console.

Figure 1.10

The Get-
Childitem

cmdlet displays
the contents of

the current
working directory.

to use Get-Childitem in order to display the contents of a folder, Microsoft has created an

alias of dir for this cmdlet. You can therefore type dir in place of Get-Childitem and you

receive the same exact results, as demonstrated in Figure 1.11.

Recognizing that not everybody is an experienced Windows user or administrator, Microsoft

has also created an alias of ls for the Get-Childitem cmdlet in order to help smooth the tran-

sition to Windows PowerShell for users and administrators with a Linux or UNIX back-

ground. As Figure 1.12 shows, entering ls at the PowerShell command prompt results in the

exact same results as the previous two examples.

Window PowerShell provides access to over 100 cmdlets, most of which have
at least one alias. You will find a complete list of Windows PowerShell cmdlets
in Chapter 3, “Object-Based Scripting with .NET”.

HINT

15Chapter 1 • Introducing Windows PowerShell

Figure 1.11

dir is an alias
for the

Get-Childitem

cmdlet provided
to help Windows

users and
administrators

make the switch
from cmd.exe to

the Windows
PowerShell.

Figure 1.12

ls is an alias
for the

Get-Childitem

cmdlet provided
to help Linux and
UNIX users and
administrators

make the switch
to the Windows

PowerShell.

16

Other Types of Commands
It is important that I do not leave you with the impression that the only types of commands

that you can run from the Windows PowerShell command prompt are cmdlets. In fact, you

can run any executable file. One way to locate executable files is by using the Get-Command

cmdlet as demonstrated below.

Get-Command *.exe

In response, PowerShell will display a listing of all the executable files it can find. If you

examine this list you will probably see a number of executable files that you are already

familiar with. For example, you could start the Notepad application by typing notepad and

pressing Enter at the PowerShell command prompt.

A Short PowerShell Workout
The best way to become familiar with Windows PowerShell is to begin working with it. In

this section, you will get the chance to do just that. Specifically, I will provide you with a

series of command-line examples that will give you a feel for the types of cmdlets supported

by Windows PowerShell as well as the overall syntax involved in executing them.

For starters, let’s execute a command that provides a list of all active processes currently

running on the computer. This can be accomplished using the Get-Process cmdlet as

demonstrated by the following.

PS C:\Get-Process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

———- ——— ——- ——- —— ——— —— ————-

17 2 540 1396 25 0.03 27784 AcroTray

78 3 1948 2024 33 0.20 27212 ALCXMNTR

103 5 1132 2464 32 0.05 2020 alg

305 8 2992 1228 60 2.08 27840 BackWeb-137903

987 4 2128 396 34 225.42 28156 CFD

529 6 1636 3468 26 40.89 536 csrss

527 14 15732 24388 103 147.00 27920 explorer

91 3 1076 3244 35 0.56 1160 FINDFAST

94 3 872 2348 35 0.11 28436 hpgs2wnd

91 3 868 2228 35 0.09 28356 hpgs2wnf

78 3 1140 2540 35 0.69 27332 hpotdd01

61 2 912 2316 31 0.17 28184 HpqCmon

Windows PowerShell Programming for the Absolute Beginner

13 1 380 1120 17 0.03 28100 hpsysdrv

17 2 496 1448 24 0.03 27312 hpwuSchd

43 2 504 1208 15 0.08 1324 HPZipm12

0 0 0 16 0 0 Idle

6613 2 904 1324 17 0.16 1880 OPXPApp

357 11 28860 28288 151 3.97 30076 powershell

104 3 896 136 34 0.09 29704 realsched

300 7 2004 3700 36 7.75 608 services

21 1 164 340 4 0.06 472 smss

154 6 6256 5228 53 3.94 1068 spoolsv

209 5 3092 3564 62 0.20 788 svchost

335 13 1872 3048 37 1.55 836 svchost

PS C:\>

In response to the Get-Process cmdlet, Windows PowerShell displays a structured table com-

plete with headings that lists each active process on the computer as well as a bunch of

other information related to each process. Most cmdlets accept parameters that you can

alter to further specify how to want them to execute. As you have already seen, by itself the

Get-Process cmdlet retrieves a list of all the processes running on your computer. This

cmdlet also support an optional –ProcessName parameter that lets you specify a process that

it should look for as demonstrated here.

PS C:\Get-Process –ProcessName Winword

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

———- ——— ——- ——- ——- ——— — —————-

216 9 7312 18192 93 1,103.81 30516 WINWORD

PS C:\>

In this example, the Get-Process command has been instructed to display information

about the Winword process (if it is running). As you can see, cmdlet parameters begin with

a hyphen followed by the name of the parameter being specified and then the actual para-

meter. Cmdlet syntax is very straightforward but also very strict. However, the extra disci-

pline also makes Windows PowerShell syntax easier to learn and remember.

The Windows PowerShell is flexible in many circumstances; often you only need to type in

as much as is required to uniquely identify a parameter from other parameters. As a result,

you could retype the previous example as shown next and Windows PowerShell will recog-

nize that the argument being passed is the Process-Name parameter.

17Chapter 1 • Introducing Windows PowerShell

18

PS C:\> Get-Process -p winword

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

———- ——— ——- ——- ——- ——— — —————-

225 10 7496 18456 99 2,004.70 30516 WINWORD

PS C:\>

Many cmdlets, including the Get-Process cmdlet, define positional parameters, allowing

you to pass arguments to the cmdlet without explicitly specifying the parameter they are

supposed to match up against. For example, since the first parameter expected by the Get-

Process cmdlet is the –ProcessName parameter, you can omit the –ProcessName or –p and sup-

ply just the name of a process. The cmdlet will automatically assume that the first

argument you pass to it is the name of a process, as demonstrated below.

PS C:\> Get-Process winword

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

———- ——— ——- ——- ——- ——— — —————-

225 10 7476 18476 99 2,031.17 30516 WINWORD

PS C:\>

Also, you can cast a somewhat wider net and view all of the processes whose names begin

with the letter w, as demonstrated here.

PS C:\> Get-Process w*

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

———- ——— ——- ——- ——- ——— — —————-

67 2 1492 1172 14 0.03 1452 wdfmgr

428 46 6948 3408 51 6.08 564 winlogon

214 9 7300 18204 92 1,206.08 30516 WINWORD

32 1 328 684 15 0.03 1580 WLService

27 2 464 1568 25 0.05 27752 wscntfy

142 8 5820 8136 56 0.53 1600 WUSB54Gv4

PS C:\>

Windows PowerShell Programming for the Absolute Beginner

Most cmdlets allow you to refine their execution by passing them additional
information for processing as arguments. In the case of the preceding
Get-Process w* example, the * wildcard character was passed along with the
w character.

In this example, the Get-Process cmdlet processes retrieve a list of all active processes whose

names begin with the letter w, as specified by the w* argument that was passed to the cmdlet

for processing.

The * character is a wild card character that is used in pattern matching. Its pur-
pose is to set up a match with any number of characters. For example, T*p would
match any of the following strings

• Tp

• Top

• Toooooooop

The ? character is another wildcard matching character, used to set up a pattern
match with a single character. For example, T*p would match Tip or Top but not
Toooooooop.

If you have previous command-line experience, then the examples you have just seen should

look reasonably familiar. If you don’t have a lot of command-line experience, don’t worry; you

will by the end of this book, and examples such as these will eventually become second

nature to you. Before moving on, let’s look at one more command-line example.

In this example, the Get-Process cmdlet is used to retrieve a list of all active processes whose

names begins with the letters wi. Next, using a technique known as object piping, the results

of this command are passed to the Format-Table cmdlet. The Format-Table cmdlet displays

command output in a table format, allowing you to specify a number of optional parameters.

In this example, the –groupby property is used to instruct the cmdlet to organize output by

process name, as demonstrated below.

PS C:\> Get-Process wi* | Format-Table -groupby ProcessName

ProcessName: winlogon

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

———- ——— ——- ——- ——- ——— — —————-

428 46 6948 3408 51 6.08 564 winlogon

TRICK

HINT

19Chapter 1 • Introducing Windows PowerShell

20

ProcessName: WINWORD

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

———- ——— ——- ——- ——- ——— — —————-

224 10 7500 18484 99 2,120.91 30516 WINWORD

PS C:\>

Windows PowerShell Scripting
Windows PowerShell scripts are plain text files with a .ps1 file extension. These script files

are made up of one or more PowerShell script statements. Once created, PowerShell scripts

are executed like any PowerShell command or cmdlet; you just type in its name at the

PowerShell command line and optionally pass any arguments required by the script.

Windows PowerShell comes complete with its own brand-new scripting language, which

supports a full range of programming language features, including support for the following:

• variables, arrays, and hashes

• conditional logic statements

• looping statements

• functions

• error handling

You will learn about the Windows PowerShell programming language in
Chapters 3–7.

Simplifying PowerShell Script Execution
To run a PowerShell script, all that you have to do is type in the name of the script at the

PowerShell command prompt. In response, the PowerShell will search every folder in your

default search path looking for the specified PowerShell script.

I suggest that you create a new folder named something like MyScripts and use
it as the storage location for all your PowerShell script files; this will make your
script files easy to find.

HINT

HINT

Windows PowerShell Programming for the Absolute Beginner

To see the contents of your default path, start PowerShell and type $env:path, as demon-

strated here.

PS C:\> $env:path

In response you should see output similar to this.

C:\Perl\bin\;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;c:\Python2

2;C:\Program Files\Windows PowerShell\v1.0\

PS C:\Documents and Settings\Owner>

This output shows that on my computer, the PowerShell will search each of the following

folders looking for the specified PowerShell script file.

C:\Perl\bin\

C:\WINDOWS\system32

C:\WINDOWS

C:\WINDOWS\System32\Wbem

c:\Python22

C:\Program Files\Windows PowerShell\v1.0\

There are a number of different options open to you for making your Windows PowerShell

scripts easy to execute. For starters, you can store your PowerShell scripts in one of the

folders that is already listed in your default path. However, this is probably not a good idea.

It is a much better idea to store them someplace that works better for you and to run your

PowerShell scripts from there. One way to do this is to switch over to the folder where

your PowerShell scripts are stored and then precede the name of your PowerShell script with

a ./ when running them.

PS C:\> cd c:\ShellScripts

PS C:\> ./knockknock.ps1

By appending ./ in front of your PowerShell script filename, you temporarily add the cur-

rent folder to your search path, thus letting PowerShell find it. A more permanent way of

dealing with things is to permanently add your script folder to your default search path,

which you can do by right-clicking on My Computer, selecting Properties, and then select-

ing the Advanced property sheet on the System properties dialog. Next, click on the Envi-

ronment Variables button, locate the path variable in the System variables list located at the

bottom of the window, and then click on the Edit button and append a semicolon followed

by the full path name of your script folder to the end of the path string. Once you have fin-

ished making this modification, you will need to reboot your computer for the change to

take effect.

21Chapter 1 • Introducing Windows PowerShell

22

Back to the Knock Knock Joke Game
Okay, it is time to turn your attention back to the development of this chapter game’s project,

the Knock Knock Joke game. The creation of this script will demonstrate the mechanics

involved in creating and running PowerShell scripts. In addition, this game will demon-

strate how to develop a PowerShell script that can interact with the user by retrieving

command-line input and displaying text output.

At this point in the book, it is not expected that you will understand what each script state-

ment does or how it works. You will learn the basics of the PowerShell scripting language

later in Chapters 4–6. For now, your primary focus should be on learning the steps involved

in script creation and execution.

Designing the Game
It is always a good idea to spend a little time planning out the design and organization of

your PowerShell scripts before you begin writing them. This will help reduce errors and

decrease the amount of time it takes to get the job done. As you saw earlier in this chapter,

the script begins by clearing the screen and then prompting the player to answer two ques-

tions correctly before displaying the punch line for the first joke. Two additional jokes are

then told in succession. The game ends after displaying a little information about itself and

its author.

As you can see, the series of steps required to tell a joke is not terribly complicated. To

develop the PowerShell script file, you will assemble it in eight steps, as outlined here:

1. Create a new script file and add an initial statement that clears the screen.

2. Display the first line of the first joke and wait for the player to respond.

3. Display the second line of the first joke and wait for the player to respond again.

4. Displays the first joke’s punch line.

5. Pause script execution to give the player a chance to enjoy the joke.

6. Tell the script’s second joke

7. Tell the script’s third joke

8. Display closing script and author information.

Creating a New PowerShell Script
Begin by opening your preferred text or script editor and saving a new script file named

KnockKnock.ps1. Next, add the following statement as the first line in the script file.

Clear-Host

Windows PowerShell Programming for the Absolute Beginner

.ps1 is PowerShell’s standard file extension. You will be using it for all the
PowerShell game scripts you create in this book.

Clear-Host is a Windows PowerShell cmdlet. When executed, it clears out any text currently

displayed in the Windows command console, preparing it for the display of new text.

If you prefer, you can also clear the Windows command console by substituting
the clear or cls command for the Clear-Host command. clear and cls are both
aliases for Clear-Host. Window PowerShell supports well over 100 cmdlets,
most of which have at least one alias. You will find a complete list of Windows
PowerShell cmdlets in Chapter 3.

Prompting the Player to Begin the Game
Now it is time for the game to display the first joke’s opening “Knock Knock!” string and wait

for the player to respond by typing in the string Who is there?. To complete this portion of

the script, add the following statements to the end of the script file.

A string is a series of zero or more characters surrounded by double quotation
marks.

$userReply = “”

while ($userReply -ne “Who is there?”){

$userReply = read-host “Knock Knock!”

}

The first statement declares a variable named $userReply, assigning it an empty string. This

variable will be used by the while loop block that follows to store and analyze the input

keyed in by the user. The while loop has been set up to execute until the player enters the

expected response. Note that it is the single statement located inside the while loop that dis-

plays the opening “Knock Knock!” string prompt, which it does using the Read-Host cmdlet

to read a line of input from the Windows command console.

A variable is a pointer to a location in memory where a value is stored. You will
learn more about variables in Chapter 4, “Working with Variables, Arrays, and
Hashes.” A loop is collection of one or more statements that is repeatedly
executed as a unit. You will learn more about loops in Chapter 6, “Using Loops
to Process Data.”

HINT

HINT

HINT

HINT

23Chapter 1 • Introducing Windows PowerShell

24

Collecting Additional Player Input
Once the player has provided the correct response to the opening “Knock Knock!” prompt,

the game needs to display the joke’s setup line, which is accomplished by adding the

following statements to the end of the script file.

Clear-Host

while ($userReply -ne “Orange who?”){

$userReply = read-host “Orange.”

}

As you can see, the first statement shown here clears the Windows command console

screen. Next, a while loop executes using the Read-Host cmdlet to display a prompt of

“Orange.”. The player must then respond by entering “Orange who?” in order for the game to

continue.

Displaying the Punch Line
Once the player has provided the correct response, the script displays the first joke’s punch

line. This is accomplished by adding the following statements to the end of the script file.

Clear-Host

Write-Output “Orange you glad you created this PowerShell script?”

The first statement clears the Windows command console screen. The second statement

displays a text string containing the first joke’s punch line using the Write-Output cmdlet.

By default, the Write-Output cmdlet writes a line of text to the Windows
command console screen.

Pausing Between Jokes
After each joke is told, the game is supposed to pause for five seconds to give the player an

opportunity to read the joke’s punch line. This is accomplished by adding the following

statement to the end of the script file.

Start-Sleep -Seconds 5

This statement executes the Start-Sleep cmdlet, telling it to pause script execution for five

seconds.

HINT

Windows PowerShell Programming for the Absolute Beginner

Telling the Second Joke
At this point, the script’s first joke has been presented to the user. Now it is time to write the

code statements required to tell the game’s second joke. The code statements required to

complete this task are almost identical to the statements that presented the first joke,

except for some slightly different content in the text strings that make up the text of the

joke. This code, shown below, must be added to the end of the script file.

Clear-Host

while ($userReply -ne “Who is there?”){

$userReply = read-host “Knock Knock!”

}

Clear-Host

while ($userReply -ne “Orange who?”){

$userReply = read-host “Orange.”

}

Clear-Host

Write-Output “Oranges are oranges but this is PowerShell scripting!”

Start-Sleep -Seconds 5

Telling the Third Joke
The code statements responsible for telling the game’s third joke are shown next. These

statements need to be added to the end of your PowerShell script file.

Clear-Host

while ($userReply -ne “Who is there?”){

$userReply = read-host “Knock Knock!”

}

Clear-Host

while ($userReply -ne “Banana who?”){

$userReply = read-host “Banana.”

}

25Chapter 1 • Introducing Windows PowerShell

26

Clear-Host

Write-Output “Orange you glad I didn’t say orange?”

Start-Sleep -Seconds 5

As you can see, these code statements are almost identical to the statements that presented

the first and second jokes, except for some slightly different text string content.

Displaying Game and Author Information
The Knock Knock Joke game ends by clearing the Windows command console screen,

displaying a little information about the game and the game’s author, and, after a three-

second pause, clearing the screen and ending. The code statements that make this happen

are shown next and should be added to the end of your script file.

Clear-Host

Write-Output “The Knock Knock Joke”

Write-Output “”

Write-Output “Copyright 2006 - Jerry Lee Ford, Jr.”

Start-Sleep -Seconds 3

Clear-Host

The Final Result
At this point, your new Windows PowerShell script should be complete. Since this is your

first PowerShell script and since you built it in a series of different steps, I’ve gone ahead and

laid out a full copy of the entire script here so that you can make sure that you did not miss

anything when keying your copy of the script.

Clear-Host

$userReply = “”

while ($userReply -ne “Who is there?”){

$userReply = read-host “Knock Knock!”

}

Windows PowerShell Programming for the Absolute Beginner

Clear-Host

while ($userReply -ne “Orange who?”){

$userReply = read-host “Orange.”

}

Clear-Host

Write-Output “Orange you glad you created this PowerShell script?”

Start-Sleep -Seconds 5

Clear-Host

while ($userReply -ne “Who is there?”){

$userReply = read-host “Knock Knock!”

}

Clear-Host

while ($userReply -ne “Orange who?”){

$userReply = read-host “Orange.”

}

Clear-Host

Write-Output “Oranges are oranges but this is PowerShell scripting!”

Start-Sleep -Seconds 5

Clear-Host

while ($userReply -ne “Who is there?”){

$userReply = read-host “Knock Knock!”

}

Clear-Host

while ($userReply -ne “Banana who?”){

$userReply = read-host “Banana.”

}

27Chapter 1 • Introducing Windows PowerShell

28

Clear-Host

Write-Output “Orange you glad I didn’t say orange?”

Start-Sleep -Seconds 5

Clear-Host

Write-Output “The Knock Knock Joke”

Write-Output “”

Write-Output “Copyright 2006 - Jerry Lee Ford, Jr.”

Start-Sleep -Seconds 3

Clear-Host

Assuming that you have not made any typos, your Knock Knock Joke script should be ready

to run. If you run into any errors, then you have made a typo somewhere. If this is the case,

you will need to go back and review your work and find where you made a mistake.

Summary
This chapter has taught you a lot about Windows PowerShell and Windows PowerShell

scripting. You learned what makes Windows PowerShell different from its predecessor and

examined its major features and components. You learned how to install and configure its

execution. You learned how to execute cmdlets and to create and run Windows PowerShell

scripts. You learned how to get help on different PowerShell commands. On top of all this,

you created your first Windows PowerShell game, the Knock Knock Joke game.

The Knock Knock Joke game is admittedly not the most advanced PowerShell script. Still, if

you are new to programming, you may not yet understand everything that you see. Don’t

worry about that for now. The important thing for you to take away from the development

of this script is a basic understanding of the mechanics involved in creating and executing

a Windows PowerShell script.

When it comes to computer games, there is always room for improvement. Before you move

on to the next chapter, I recommend that you spend a little more time working on the

Knock Knock Joke game by trying to implement the following list of challenges.

Windows PowerShell Programming for the Absolute Beginner

29Chapter 1 • Introducing Windows PowerShell

C H A L L E N G E S

1. As currently written, the Knock Knock Joke game presents players with three
somewhat bland jokes. I suggest that you replace these jokes with knock knock
jokes of your own.

2. With only three jokes, the Knock Knock Joke game does not take very long to
complete. Give the player a better experience by expanding the number of jokes
that are told.

3. Once you have added your own jokes to the Knock Knock Joke game, take credit
for your work by modifying the developer information that is displayed at the
end of the script.

This page intentionally left blank

Interacting with the
Windows PowerShell

Command Line

2
C H A P T E R

I
n order to work effectively with the Windows PowerShell and to develop

PowerShell scripts, you must have a solid understanding of how to inter-

act with Windows from the PowerShell command line. This chapter will

provide you with instruction on how to configure the Windows command con-

sole in order to create a better working environment with which to interact with

Windows PowerShell. This will include learning how to configure the command

console layout and to specify your default working directory. This chapter will also

explain how to take advantage of Windows PowerShell’s built-in tab completion

feature in order to save time and reduce errors when keying in commands. You

will also learn how to use Windows PowerShell to navigate and access different

types of system resources, including the Windows registry, environment variables,

and disk drives. On top of all this, you will learn how to create your second

PowerShell game, The Story of the Three Amigos.

Specifically, you will learn how to:

• Set a default working directory for your PowerShell sessions

• Customize the Windows command console

• Reduce the time required to complete commands by taking advantage of

tab completion

• Use Windows PowerShell to access different hierarchical data stores

C H A P T E R

32 Windows PowerShell Programming for the Absolute Beginner

Project Preview: The Story of the Three Amigos
In this chapter you will learn how to create a new computer game that tells The Story of the

Three Amigos. Key pieces of this mad-lib styled story are collected from the user in the form

of responses to seemingly unrelated questions. The end result is a story that is never told the

same way twice. The Story of the Three Amigos begins by displaying its title page, as shown

in Figure 2.1.

The Story of the Three Amigos is a mad-lib styled game in which player input is collected

and plugged into key places in the story to allow the user to participate in the story-telling

experience. Before asking any questions, the game informs the users of what is expected

from them, as shown in Figure 2.2.

Figure 2.2

The Story of the
Three Amigos is

an interactive
story that

depends on
user input.

Figure 2.1

The Story of the
Three Amigos
is told a page

at a time.

In total, the user is asked four questions without knowing in advance the context in which the

answers will be used. Figure 2.3 provides an example of one of the questions asked by the game.

Once the game has collected all of the information that it requires, it begins telling The

Story of the Three Amigos a page at a time. The first page of the story is shown in Figure 2.4.

As users read through each page of the story, they will notice how the answers they provided

have affected the manner in which the story is told, as demonstrated in Figure 2.5.

33Chapter 2 • Interacting with the Windows PowerShell Command Line

Figure 2.3

Users must wait
until the story is
told to see how

their inputs
are used.

Figure 2.4

The opening page
of The Story of

the Three
Amigos.

34

Figure 2.6 shows the next page of the story, which explains how the story’s heroes defeat

their enemy and save the townsfolk.

The Story of the Three Amigos ends, like so many stories, with a happy ending, as shown in

Figure 2.7.

Windows PowerShell Programming for the Absolute Beginner

Figure 2.5

The second page
of The Story of

the Three
Amigos.

Figure 2.6

The third page of
The Story of the

Three Amigos.

Figure 2.7

The last page of
The Story of the

Three Amigos.

By the time you have finished the Windows PowerShell script that makes up The Story of

the Three Amigos, you should have a good understanding of the mechanics involved in cre-

ating and executing Windows PowerShell scripts.

Accessing Windows PowerShell
As you have already seen, you can start a new Windows PowerShell session by clicking on

Start > All Programs > Windows PowerShell. When first started, the Windows command con-

sole appears and, after a moment, displays the following information.

Windows(R) PowerShell

Copyright (C) 2006 Microsoft Corporation. All rights reserved.

PS C:\>

By default, Windows PowerShell displays its name and copyright information each time it

is started. The name and copyright information is followed by a blank line and the Windows

PowerShell command prompt. The command prompt displays, by default, the Windows

PowerShell’s current working directory.

There are plenty of other ways to start new Windows PowerShell sessions. For example, you

could also click on Start > Run and then type PowerShell in the Run window that appears,

as shown in Figure 2.8.

When started from the Run window, Windows gives you the opportunity to pass arguments

to the Windows PowerShell at startup. For example, if you wanted to prevent the display

of the Windows PowerShell name and copyright information, you should type PowerShell

–nologo into the Run window and click on OK. The end result would be a new Windows

PowerShell session that starts up by displaying the PowerShell command prompt only.

35Chapter 2 • Interacting with the Windows PowerShell Command Line

Figure 2.8

Starting Windows
PowerShell from
the Run window.

36

You can also start a new PowerShell session from within a cmd.exe shell console session by

typing PowerShell at the command prompt and pressing Enter. In response, a new Power-

Shell session is started within the current command window. When done working with the

PowerShell session, you can close it and return to the cmd.exe session by typing Exit at

the PowerShell command line and pressing Enter.

Another way to start up a new Windows PowerShell session is to create a desktop shortcut

for it, which you can do by clicking on Start > All Programs, right-clicking on the Windows

PowerShell icon, then selecting Create Shortcut. This adds a PowerShell shortcut to the

Windows PowerShell group, which you can then drag and drop onto your Windows desktop.

Another way of creating a shortcut for Windows PowerShell is to right-click on
an open area of the Windows desktop and, when prompted, select New >
Shortcut. This will start a Create Shortcut wizard, whose job is to walk you
through the process of setting up new shortcuts. Type PowerShell in the Type
the Location of the Item field and click on Next. Next type Windows
PowerShell in the Type a Name for This Shortcut field and click on Finish.

Customizing the Windows PowerShell Working
Environment
Regardless of how you start a Windows PowerShell session, you will find yourself working

with it from within the Windows command console application. The good news is that

the Windows command console provides you with access to a rich set of commands and

features that help give you greater control over the manner in which you interact with the

PowerShell and that can also be used to help you work faster and more efficiently.

Customizing Windows PowerShell Shortcuts
Placing a shortcut to the Windows PowerShell on your desktop provides convenient access.

One way to make the shortcut an even more convenient tool is by modifying its Start in field

to point to the folder where you have decided to store all your Windows PowerShell script

files. This way, all you have to do is double-click on your Windows PowerShell icon and a new

session will start up, using the specified folder as your current working directory.

The steps required to modify your Windows PowerShell shortcut as described above are out-

lined in the following procedure.

1. Right-click on your Windows PowerShell shortcut and select Properties. The Windows

PowerShell Properties dialog box will appear.

TRICK

Windows PowerShell Programming for the Absolute Beginner

2. Type the full path name for your PowerShell script folder in the Start in field, as

demonstrated in Figure 2.9.

3. Click on OK.

The next time you start up a new Windows PowerShell session using this shortcut, the

Windows command console will appear and a new PowerShell session will be started with

the specified folder set as your current working directory, as demonstrated in Figure 2.10.

37Chapter 2 • Interacting with the Windows PowerShell Command Line

Figure 2.9

Configuring your
Windows

PowerShell
shortcut in order

to specify its
default working

directory.

Figure 2.10

Starting a new
Windows

PowerShell
session using a

customized
shortcut.

38

Configuring the Windows Command Console
Windows PowerShell is accessed through the Windows command console. By default, the

Windows command console displays text in a window that is 45 lines long and 120 charac-

ters wide. All text is displayed as white text on a blue background. As a Windows PowerShell

programmer, it is important that you know how to work with the Windows command con-

sole and that it is configured to suit your personal preferences.

As the sections that follow will demonstrate, the Windows command console is highly con-

figurable, allowing you to modify its appearances and behavior in a number of ways. In addi-

tion, it provides you with a number of handy editing commands for interacting with the

Windows PowerShell.

To help improve the presentation of figures in this book, I have modified my
version of the Windows command console to be 25 characters long and 80
characters wide. Also, I have set up text to display as black characters on a white
background.

Windows Command Console Customization Options
In order to customize the Windows command console, you must first open it up, which you

can do by starting a new Windows PowerShell session. Once opened, right-click on the Com-

mand Prompt icon located in the upper-left corner of the command console’s title bar and

then select Properties from the context menu that appears. This will open the Windows

PowerShell Properties dialog window. This dialog is organized into four property sheets.

Each of these sheets controls a different aspect of the Windows command console. You

configure the Windows command console’s behavior and appearance by modifying the

attribute information shown on these property sheets.

Even though this section highlights the configuration of the Windows com-
mand console using Windows XP, the information provided here should also
broadly apply to both Windows 2003 and Windows Vista.

Modifying Command Console Options
The first property sheet on the Properties window is the Options tab, as shown in Figure

2.11. From here you can modify the following Windows command console attributes:

• Cursor Size. Determines whether the command console cursor appears in a small,

medium, or large size.

HINT

HINT

Windows PowerShell Programming for the Absolute Beginner

• Command History. Determines the size of the command console’s buffers, which

affects the number of commands the command console stores and retrieves, as well

as the number of buffers in use and whether or not duplicate commands are saved as

part of the command console’s command history.

• Display Options. Determines whether the command console opens in its default

window view or in full-screen mode.

• Edit Options. Determines whether QuickEdit mode and Insert mode are enabled.

QuickEdit is a command console feature that supports the copying of text from

the command window and the pasting of text to the command prompt. Insert mode

controls whether text is inserted or overwritten when editing text keyed in at the

command prompt.

Modifying Command Console Font Attributes
The second property sheet on the Properties window is the Font tab, as shown in Figure 2.12.

From here you can modify the font size and font type used by the Windows command console.

Changes to font size also affect the size of the Windows command console. The Windows

Preview area provides you with visual feedback regarding the effects of making a font size

change.

39Chapter 2 • Interacting with the Windows PowerShell Command Line

Figure 2.11

The Options
property sheet
provides access

to console
attributes that
control cursor

size and
command history
as well as display
and edit settings.

40

The Font property sheet also allows you to change the font type used by the Windows com-

mand console. The effects of a font type selection are made immediately apparent in the

Selected Font: Terminal section of the Font property sheet. Depending on the font that you

select, the Bold fonts attribute, located just above the list of available fonts, is enabled.

When enabled, console text appears bold, which, depending on your preferences, may make

console text easier to read.

Changing the Layout of the Windows Command Console
The third property sheet on the Properties window is the Layout tab, as shown in Figure 2.13.

From here you can set the Windows command console’s initial size and display location.

Changes made to Layout attributes are immediately reflected in the Window Preview por-

tion of the Layout property sheet. Configuration changes are made by modifying any of the

following settings:

• Screen Buffer Size. The Width setting specifies the number of characters that are dis-

played on a single line. The Height setting specifies the number of lines of text that

can be stored in memory, thus controlling the number of lines that you can scroll

back and view.

• Window Size. The Width setting specifies the number of characters that are dis-

played on a single line. The Height setting specifies the number of lines of text the

command console displays by default. Regardless of these settings, you can always

Windows PowerShell Programming for the Absolute Beginner

Figure 2.12

Configuring font
attributes for
the Windows

command
console.

manually resize the Windows command console like any other Windows application

by right-clicking on its edges and dragging them to a new location. It should be

noted, however, that the Windows command console cannot be resized any larger

than the height and width values set in the Screen Buffer Size section.

• Window Position. You can set the starting location of the Windows command console

by modifying these settings to specify the exact location where the Windows command

console should be displayed when started. Position is set by specifying the pixel count

of the left and right corner of the Windows command console’s upper-left corner. A

pixel (picture element) represents the smallest area that can be displayed or printed.

Optionally, you can allow Windows to determine the proper location for the Windows

command console by leaving the default Let System Position Window attribute selected.

I recommend that you set the Screen Buffer Size Height setting to three times
the height of the Window Size setting. This will allow you to scroll back through
several pages of previously executed commands and command output.

Changing Command Console Color Attributes
The fourth property sheet on the Properties window is the Colors tab, as shown in Figure

2.14. From here you can change the Windows command console’s foreground and back-

ground colors.

TRICK

41Chapter 2 • Interacting with the Windows PowerShell Command Line

Figure 2.13

Modifying
Windows
command

console default
screen size and

Windows
position.

42

The left side of the top portion of the Colors property sheet provides access to four different

options. To configure these options, select them one at a time and then select a color from

the color strip located in the middle of the property sheet. The four options include:

• Screen Text. Specifies the color used to display text.

• Screen Background. Specifies the color used to display the command console’s

background color.

• Popup Text. Specifies the color used to display the text color of the Windows

command console’s Command History dialog box.

• Popup Background. Specifies the color used to display the background color of the

Windows command console’s Command History dialog box.

If you prefer, you can specify a custom color instead of a selecting a color from the color strip

by selecting one of these four configuration options and then specifying various levels of

red, green, and blue using the scrollbar controls located in the Selected Color values section

in the top-right corner of the Colors property sheet.

The bottom half of the Colors tab provides a visual preview of the effect of any changes

made to the Windows command console and its Command History dialog box.

Going forward, I have set the screen background color of the Windows com-
mand console to white and the screen text color to black. This will generate
screen figures that are more legible and easier to read for the rest of the book’s
game scripts.

HINT

Windows PowerShell Programming for the Absolute Beginner

Figure 2.14

Modifying the
Windows
command

console
foreground and

background color
attributes.

Windows Command Console Editing Features
Because you access and interact with the Windows PowerShell within the Windows com-

mand console, you have access to a host of helpful editing features that are built into the

console. For example, you can edit any command already typed in at the command prompt

by using the left and right arrow keys to move back and forth to locations within the com-

mand and then use the Backspace or Delete keys to remove characters from the command.

In addition to this basic command-editing capability, you can use any of the edit features

shown in Table 2.1 to take control of the command line and edit and execute commands.

The Windows command console maintains a list of commands that are executed
during the current working session. This list is referred to as the history buffer.

You can also view a listing of the commands stored in the Windows command
console’s history buffer by pressing the F7 key. In response, the Windows com-
mand console displays a window like the one shown in Figure 2.15.

TRICK

HINT

43Chapter 2 • Interacting with the Windows PowerShell Command Line

Edit Feature Result

Up Arrow Moves back one position in the command-line history buffer.

Down Arrow Moves forward one position in the command-line history buffer.

Page Up Moves to the first command stored in the command-line history buffer.

Page Down Moves to the last command stored in the command-line history buffer.

Home Jumps the cursor to the beginning of the command line.

End Jumps the cursor to the end of the command line.

Control+Left Moves the cursor to the left a word at a time.

Control+Right Moves the cursor to the right a word at a time.

TA B L E 2.1 W I N D O W S C O M M A N D C O N S O L E E D I T C O M M A N D S

Figure 2.15

Viewing and
executing

commands stored
in the Windows

command
console history

buffer.

44

Note that to the left of each command in the history buffer is a number. You can
execute any command in the list by typing its associated number and pressing
the Enter key. If the buffer contains more commands than can be displayed at
one time, you can use the up and down arrows to move up and down in the his-
tory buffer in order to locate the command you are looking for.

Windows PowerShell Edit Enhancements
In addition to inheriting access to all the edit features provided by the Windows command

console, Windows PowerShell also provides you with access to a couple of PowerShell-

specific editing capabilities that you can use to work smarter and faster from the Windows

PowerShell command prompt.

Tab Completion
One powerful Windows PowerShell feature that merits explicit recognition is tab completion.

Tab completion allows you to type a part of a command and then hit the Tab key to get assis-

tance in filling out the rest of the command. For example, if you type get- at the PowerShell

prompt and then press the Tab key, PowerShell responds by displaying the following:

Get-Acl

If this is the command you want, press Enter to accept this selection. Otherwise, press Tab

again to see the next available suggestion. If you continue to press Tab, PowerShell will con-

tinue to show you additional suggestions until it exhausts the available list, after which it

starts over again, letting you loop back through the list of suggestions. For example, if you

were to continue to press Tab in the current example, you would eventually see each of the

following suggestions.

Get-Alias

Get-AuthenticodeSignature

Get-ChildItem

Get-Command

Get-Content

Get-Credential

Get-Culture

Get-Date

Get-Eventlog

Get-ExecutionPolicy

Get-Help

Windows PowerShell Programming for the Absolute Beginner

Get-History

Get-Host

Get-Item

Get-ItemProperty

Get-Location

Get-Member

Get-PfxCertificate

Get-Process

Get-PSDrive

Get-PSProvider

Get-PSSnapin

Get-Service

Get-TraceSource

Get-UICulture

Get-Unique

Get-Variable

Get-WmiObject

The obvious advantage of tab completion is that you do not have to remember all of a com-

mand to be able to key it in. You only have to remember enough to help PowerShell identify

the broad category and then start pressing Tab. Tab completion applies to more than just

helping you key in cmdlets; it can also assist you in filling in filenames based on the con-

tents of the current working directory, variable names, and property names. For example,

enter the following statements at the PowerShell command prompt and press Enter.

$x = “Once upon a time...”

This statement creates a variable named $x and assigns it a value consisting of a text string.

Next, type $x. and then press the Tab key. In response, PowerShell will display the first of a

series of possible matches based on the contents of the command being formulated. In this

example, PowerShell will display methods appropriate for working with a variable that con-

tains a text string. When a method is selected, it is appended to the end of your current com-

mand along with an opening left parenthesis, leaving it up to you to supply any additional

arguments and then the obligatory closing right parenthesis. For example, if you were to

keep pressing the Tab key until the ToLower(suggestion was displayed and then you pressed

the Enter key, you would end up with the following results.

$x.ToLower(

45Chapter 2 • Interacting with the Windows PowerShell Command Line

46

The ToLower() method is used to convert all of the characters that make up a
string to all lowercase characters. To finish off the previous example, all you
would need to do is add the closing right parenthesis and then press Enter, as
demonstrated here:

PS C:\> $x = “Once upon a time...”

PS C:\> $x.ToLower()

once upon a time...

PS C:\>

Alternatively, you could press the Enter key to select the ToLower(suggestion
and then type the closing right parenthesis and press the Enter key twice as
shown here.

PS C:\> $x = “Once upon a time...”

PS C:\> $x.ToLower(

>>)

>>

once upon a time...

PS C:\>

In this example, PowerShell did not execute the specified command when you
first pressed the Enter key because it knew the command was not complete.
Instead, it left you in Edit mode as indicated by the absence of the command
prompt and the presence of the >> characters on the left side of the screen.
When you supplied the required closing right parenthesis and then pressed the
Enter key, PowerShell remained in Edit mode, allowing you to add to the com-
mand if necessary. Pressing Enter a second time without entering any text
closed Edit mode and instructed PowerShell to execute your command.

The Get-History Cmdlet
You can also get your hands on entries stored in the history buffer using the Get-History

cmdlet. This cmdlet accesses history buffer commands and inserts them into the Windows

PowerShell pipeline, allowing to you programmatically access and manipulate them. For

example, using the Get-History cmdlet, you could display a list of commands stored in the

history buffer, as demonstrated here.

PS C:\MyScripts> Get-History

Id CommandLine

— —————-

TRICK

Windows PowerShell Programming for the Absolute Beginner

1 Get-Process

2 Get-Alias

3 Get-Help

With this information now in your possession, you can execute any of the commands in the

history buffer using the Invoke-History cmdlet, which takes as an argument a number rep-

resenting the position of a command in the history buffer. For example, to execute the second

command listed in the previous example, you would enter the following command at the

PowerShell command prompt and press Enter.

Invoke-History 2

While this may seem like a lot of work just to find and re-execute a simple two-word cmdlet,

the real value of the Get-History and Invoke-History cmdlets comes into play when you find

yourself repeatedly executing a series of complex and lengthy commands. Not only will you

be able to work faster, but also, once you have your commands entered correctly, you can re-

execute them over and over again without making any typos.

Navigating Hierarchical Data Stores
Traditional command shells are designed to interact with and navigate the computer’s file sys-

tem. The file system is a hierarchical data store made up of drives, folders, and files. In the

cmd.exe shell, the dir command is used to display the contents of the current working direc-

tory and the cd command is used to navigate the file system’s hierarchical structure. Similar

commands are available in Windows PowerShell (the Get-ChildItem and Set-Location cmdlets).

However, unlike traditional shells, Windows PowerShell does not limit itself to just the com-

puter’s file system. Instead, Windows PowerShell has the ability to access and navigate many

different hierarchical data stores, including:

• Alias commands

• Environment variables

• Windows PowerShell functions

• The Windows registry

• Variables

• Certificates

In order to facilitate the access of different hierarchical data stores, Windows PowerShell

implements a provider model that exposes different hierarchical data stores in a manner

that simulates a file system. As such, not only can you access these different data stores, but

you can do so using familiar commands (e.g., cd or Set-Location and dir or Get-ChildItem).

47Chapter 2 • Interacting with the Windows PowerShell Command Line

48

You can view a listing of all the providers supported by Windows PowerShell by executing

the Get-PSProvider cmdlet, as demonstrated here.

PS C:\MyScripts> Get-PSProvider

Name Capabilities Drives

—— —————— ———

Alias ShouldProcess {Alias}

Environment ShouldProcess {Env}

FileSystem Filter, ShouldProcess {C, D, A, E...}

Function ShouldProcess {Function}

Registry ShouldProcess {HKLM, HKCU}

Variable ShouldProcess {Variable}

Certificate ShouldProcess {cert}

As this cmdlet shows, each provider is represented as a drive. Alternatively, you can use the

Get-PSDrive cmdlet to display a listing of available drives and the provider with which they

are associated, as demonstrated here.

PS C:\> Get-PSDrive

Name Provider Root CurrentLocation

—— ———— —— ———————-

A FileSystem A:\

Alias Alias

C FileSystem C:\

cert Certificate \

D FileSystem D:\

E FileSystem E:\

Env Environment

F FileSystem F:\

Function Function

G FileSystem G:\

H FileSystem H:\

HKCU Registry HKEY_CURRENT_USER

HKLM Registry HKEY_LOCAL_MACHINE

I FileSystem I:\

J FileSystem J:\

Variable Variable

Windows PowerShell Programming for the Absolute Beginner

You can access any of the drives exposed by Windows PowerShell providers using the

Set-Location cmdlet. For example, to switch from the default C: drive to the logical Env

drive, you would type

PS C:\> cd Env:

PS Env:\>

The Env drive provides access to system environmental variables maintained
by the Windows operating system.

Once you have targeted a given drive, you can display its contents using the Get-ChildItem

cmdlet, just as if it were a physical disk drive, as demonstrated here.

PS C:\> cd Env:

PS Env:\> Get-ChildItem

Name Value

—— ——-

Path C:\Perl\bin\;C:\WINDOWS\system32;C:\WINDOWS;C...

TEMP C:\DOCUME~1\Owner\LOCALS~1\Temp

SESSIONNAME Console

PATHEXT .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;....

USERDOMAIN HP

PROCESSOR_ARCHITECTURE x86

SystemDrive C:

APPDATA C:\Documents and Settings\Owner\Application Data

windir C:\WINDOWS

PCToolsDir C:\Documents and Settings\All Users\Start Men...

TMP C:\DOCUME~1\Owner\LOCALS~1\Temp

USERPROFILE C:\Documents and Settings\Owner

ProgramFiles C:\Program Files

FP_NO_HOST_CHECK NO

HOMEPATH \Documents and Settings\Owner

COMPUTERNAME HP

USERNAME Owner

NUMBER_OF_PROCESSORS 2

PROCESSOR_IDENTIFIER x86 Family 15 Model 2 Stepping 9, GenuineIntel

SystemRoot C:\WINDOWS

ComSpec C:\WINDOWS\system32\cmd.exe

HINT

49Chapter 2 • Interacting with the Windows PowerShell Command Line

50 Windows PowerShell Programming for the Absolute Beginner

APPDATA C:\Documents and Settings\Owner\Application Data

windir C:\WINDOWS

PCToolsDir C:\Documents and Settings\All Users\Start Men...

TMP C:\DOCUME~1\Owner\LOCALS~1\Temp

USERPROFILE C:\Documents and Settings\Owner

ProgramFiles C:\Program Files

FP_NO_HOST_CHECK NO

HOMEPATH \Documents and Settings\Owner

COMPUTERNAME HP

USERNAME Owner

NUMBER_OF_PROCESSORS 2

PROCESSOR_IDENTIFIER x86 Family 15 Model 2 Stepping 9, GenuineIntel

SystemRoot C:\WINDOWS

ComSpec C:\WINDOWS\system32\cmd.exe

LOGONSERVER \\HP

CommonProgramFiles C:\Program Files\Common Files

PROCESSOR_LEVEL 15

PROCESSOR_REVISION 0209

ALLUSERSPROFILE C:\Documents and Settings\All Users

OS Windows_NT

HOMEDRIVE C:

PS Env:\>

Because of the manner in which Windows PowerShell abstracts different hierarchical data

structures, you can access parts of the Windows registry just as easily as a physical disk drive

or the local Env drive. The Windows registry is organized into a series of high-level keys.

Windows PowerShell provides access to two of these keys, as outlined in Table 2.2.

Registry Key Abbreviation Description

HKEY_LOCAL_MACHINE HKLM Stores information about system-configuration
settings that affect all users of the computer.

HKEY_CURRENT_USER HKCU Stores information about the currently logged
on user’s configuration settings.

TA B L E 2. 2 R E G I S T R Y K E Y S A C C E S S I B L E

B Y W I N D O W S P O W E R S H E L L

To access either of the two registry keys listed in Table 2.2, you must reference its abbrevi-

ated name, as demonstrated here.

PS C:\> cd HKCU:

PS HKCU:\> Get-ChildItem

Hive: Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER

SKC VC Name Property

—- — —— ————

2 0 AppEvents {}

0 1 bfgt {status}

1 1 Console {LoadConIme}

11 1 Control Panel {Opened}

0 2 Environment {TEMP, TMP}

1 6 Identities {Identity Ordinal, Migrated5, Last Us...

0 0 Network {}

4 1 Printers {DeviceOld}

0 0 RemoteAccess {}

0 7 S {AutodiscoveryFlags, DetectedInterfac...

60 0 Software {}

0 0 UNICODE Program Groups {}

1 0 VBGames {}

0 1 vivfile {(default)}

2 0 Windows 3.1 Migration Status {}

0 1 SessionInformation {ProgramCount}

0 7 Volatile Environment {LOGONSERVER, CLIENTNAME, SESSIONNAME...

PS HKCU:\>

In this example the HKEY_CURRENT_USER key has been accessed and displayed.

You will learn how to programmatically interact with the Windows registry
including how to store and retrieve data, in Chapter 9, “Basic System
Administration.”

HINT

51Chapter 2 • Interacting with the Windows PowerShell Command Line

52

Back to The Story of the Three Amigos
Okay, it is time to turn your attention back to the chapter’s main game project, The Story of

the Three Amigos. The development of this is game will demonstrate how to create a script

that can interact with the player by displaying messages, retrieving command-line input,

and applying simple programming logic to control the operation of the script.

Going forward, I plan to develop a script template file that will be used as
the basis for all new Windows PowerShell scripts. You will find a copy of this
script template, named PSTemplate.ps1, on the book’s companion website
(www.courseptr.com/downloads). The purpose of this script template is to
provide additional documentation for each new script file. For now, this tem-
plate, shown below, will provide a place to document the script’s name, version,
author, date, and description. Later, I’ll modify the template again when cover-
ing functions in Chapter 7, “Organizing Scripts Using Functions.”

**

#

Script Name:

Version:

Author:

Date:

Description:

#

**

Note that this template consists of a series of comment lines. Comments are
text embedded within script files that helps to document the scripts, but which
is otherwise ignored when the script is executed. In Windows PowerShell, the #
character serves as a comment indicator. Anything that follows a # character in
a script is considered a comment. Comments can be placed on their own line or
placed at the end of a script statement.

Before writing the first line of code, it is important to spend a little time planning out the

script’s overall design. The Story of the Three Amigos will begin by displaying a title page.

Next, the user is informed that her participation is required to tell the story, after which

four questions are presented. Each answer that is provided must be saved. The text that

makes up the story must then be laid out. In addition, the variables containing the user’s

TRICK

Windows PowerShell Programming for the Absolute Beginner

www.courseptr.com/downloads

answers must be strategically placed at specific locations within the story text. Lastly, closing

credits and copyright information should be displayed.

As you can see, the overall logical flow of The Story of the Three Amigos is fairly simple. To

set it up, you will complete its development in eight steps.

1. Create a new script file using the PowerShell template and add opening statements.

2. Declare variables used throughout the script file.

3. Display the introduction screen.

4. Display game instructions.

5. Collect first player input.

6. Collect additional player input.

7. Display the opening portion of the story.

8. Display the rest of the story.

Creating a New Script
The first step in creating The Story of the Three Amigos is to open the PowerShell template

file and save it as a new file named ThreeAmigos.ps1. Next, modify the comment statements

at the top of the script file, as shown here.

#

Script Name: ThreeAmigos.ps1 (The Story of the Three Amigos)

Version: 1.0

Author: Jerry Lee Ford, Jr.

Date: January 1, 2007

Description: This PowerShell script is a mad-lib styled game that tells

a humorous story using input provided by the player.

#

Next, let’s add the script’s first statement.

#Clear the Windows command console screen

Clear-Host

As you can see, the script begins by executing the Clear-Host cmdlet to clear the display area

of the Windows command console. To make things perfectly clear, I have added a comment

just above the Clear-Host command, explaining what the command will do when executed.

53Chapter 2 • Interacting with the Windows PowerShell Command Line

54

Declaring Script Variables
The next step in the development of The Story of the Three Amigos is to declare all of the

variables that will be used to store the input provided by the user when responding to each

of the game’s four questions. This is accomplished by appending the following statements

to the end of your PowerShell script file.

#Define the variables used in this script to collect player input

$animal = “” #Stores the name of an animal supplied by the player

$vehicle = “” #Stores the name of a vehicle supplied by the player

$store = “” #Stores the name of a store supplied by the player

$dessert = “” #Stores the name of a dessert supplied by the player

Note that I have assigned descriptive names to each variable that help to provide an indica-

tion of the type of data that they will store.

Displaying the Introduction
The next step in assembling your new Windows PowerShell script is to append the follow-

ing statements to the end of the script file.

#Display the game’s opening screen

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host “ T H E S T O R Y”

Write-Host

Write-Host

Write-Host

Write-Host “ O F T H E T H R E E A M I G O S”

Write-Host

Write-Host

Write-Host

Write-Host “ By Jerry Lee Ford, Jr.”

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Windows PowerShell Programming for the Absolute Beginner

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host “ Press Enter to continue.”

#Pause script execution and wait for the player to press the Enter key

Read-Host

As you can see, these statements consist of a number of Write-Host cmdlet statements that

display the story’s opening screen. Note the placement of the Read-Host cmdlet. When exe-

cuted, it will pause the script and wait until the user presses the Enter key.

Providing Player Instructions
Now let’s add the statements that provide the user with instructions for interacting with

the story by appending the following statements to the end of the script file.

#Clear the Windows command console screen

Clear-Host

#Provide the player with instructions

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host “ This is an interactive mad-lib styled story. Before it can be”

Write-Host

Write-Host “ told, you must answer a few questions.”

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

55Chapter 2 • Interacting with the Windows PowerShell Command Line

56

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host “ Press Enter to continue.”

#Pause script execution and wait for the player to press the Enter key

Read-Host

As you can see, these first statements will clear the Windows command console screen.

Then a series of Write-Host cmdlets are executed in order to display the text containing the

game’s instruction. Lastly, the Read-Host cmdlet pauses the script to give the user a chance

to read the instructions before continuing.

Prompting the Player for Input
Now it is time to start collecting user input. The code statements required to display the

story’s first question and store the user’s answer is shown next and should be appended to

the end of the script file.

#Ask the player the first question

while ($animal -eq “”){

Clear-Host #Clear the Windows command console screen

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

$animal = read-host “ Enter the name of a scary animal “

}

Here, a while loop has been set up to control interaction with the user. Its main purpose is

to prevent the user from simply pressing the Enter key without first typing in something.

The user’s answer is assigned to a variable named $animal.

Windows PowerShell Programming for the Absolute Beginner

Don’t worry just yet about the workings of variables and while loops. These are
covered in detail in Chapter 4, “Working with Variables, Arrays, and Hashes,” and
Chapter 5, “Implementing Conditional Logic.”

Collecting Additional Inputs
Next, add the following code statements to the end of the script file. The statements are

responsible for collecting the rest of the input required to tell the story.

#Ask the player the second question

while ($vehicle -eq “”){

Clear-Host #Clear the Windows command console screen

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

$vehicle = read-host “ Enter the name of a transportation vehicle “

}

#Ask the player the third question

while ($store -eq “”){

Clear-Host #Clear the Windows command console screen

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

$store = read-host “ Enter the name of your favorite store “

}

HINT

57Chapter 2 • Interacting with the Windows PowerShell Command Line

58

#Ask the player the fourth question

while ($dessert -eq “”){

Clear-Host #Clear the Windows command console screen

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

$dessert = read-host “ Enter the name of your favorite dessert “

}

As you can see, these statements are organized into three while loops, each of which is little

more than a simple variation of the code statements used to prompt the user to provide an

answer to the story’s first question.

Displaying the Story’s Opening
Now that the input needed to tell the story has been collected, it is time to begin displaying

the text that makes up the story. For starters, add the following statements to the end of the

script file.

#Clear the Windows command console screen

Clear-Host

#Provide the player with instructions

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host “ Once upon a time there were three very special children”

Write-Host “ named Alexander, William, and Molly. Alexander was the oldest”

Write-Host “ and was known to be brave and strong. Molly, the youngest,”

Write-Host “ was just five years old, yet she possessed an extraordinary”

Write-Host “ sense of awareness that even the wisest sage would”

Write-Host “ admire and respect. William, the middle child, was both brave”

Windows PowerShell Programming for the Absolute Beginner

Write-Host “ and wise many times beyond his years. They lived together at”

Write-Host “ the top of a hill, just outside the outskirts of town, where”

Write-Host “ they faithfully watched over the townsfolk. Always together”

Write-Host “ and always looking out for each other and the people in the”

Write-Host “ town, they were known by everyone as The Three Amigos.”

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host “ Press Enter to continue.”

#Pause script execution and wait for the player to press the Enter key

Read-Host

These statements clear the screen, display some story text, and then pause script execution

until the user presses the Enter key.

Displaying the Rest of the Story
The code statements that display the remainder of the story are shown next and should be

appended to the end of the script file.

#Clear the Windows command console screen

Clear-Host

#Provide the player with instructions

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host “ One day, which started out no different than any other day, a”

Write-Host “ great roar was heard from the center of the town. Women and”

Write-Host “ small children could be seen screaming and running in panic.”

Write-Host “ The Three Amigos climbed to the top of their watch tower and”

Write-Host “ began scanning the town streets for the source of the noise”

59Chapter 2 • Interacting with the Windows PowerShell Command Line

60

Write-Host “ and panic. Alexander was the first to find the problem,”

Write-Host “ spotting a gigantic $animal moving quickly towards the”

Write-Host “ mayor’s office. Just ahead of the $animal stood the town’s”

Write-Host “ men, attempting to make a desperate stand.”

Write-Host “ `“Hurry, we must go!`” shouted Molly. “The town needs The”

Write-Host “ Three Amigos!” In an instant Alexander, William, and Molly”

Write-Host “ jumped into an old $vehicle, scarred and worn by years”

Write-Host “ of faithful service, and hurriedly raced into town.”

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host “ Press Enter to continue.”

#Pause script execution and wait for the player to press the Enter key

Read-Host

#Clear the Windows command console screen

Clear-Host

#Provide the player with instructions

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host “ Within minutes The Three Amigos found themselves standing in”

Write-Host “ the center of Main street. The town was quiet and seemed”

Write-Host “ almost deserted except for the old $store, where the citizens”

Write-Host “ had retreated once their last stand had failed. The $animal”

Write-Host “ was standing in front of the $store, preparing to”

Write-Host “ break in and kill the good citizens of the town.”

Write-Host “ `“What do we do?`” said Alexander. William looked around and”

Write-Host “ saw a pile of $dessert stacked up against the town”

Write-host “ barbershop’s storefront. “Follow me,” yelled William,”

Write-Host “ heading straight for the pile of $dessert. Alexander”

Write-host “ and Molly instantly knew what to do, each grabbing a $dessert”

Write-Host “ and hurling pieces of $dessert at the $animal. Unable to”

Windows PowerShell Programming for the Absolute Beginner

Write-Host “ deal with the power of the attack launched by The Three”

Write-Host “ Amigos, the $animal fled the town, never to be seen or heard”

Write-host “ of again.”

Write-Host

Write-Host

Write-Host “ Press Enter to continue.”

#Pause script execution and wait for the player to press the Enter key

Read-Host

#Clear the Windows command console screen

Clear-Host

#Provide the player with instructions

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host “ The townsfolk ran out of the $store and began cheering for”

Write-Host “ their heroes. Once again The Three Amigos has saved the day.”

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host “ T H E E N D”

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host “ Press Enter to continue.”

61Chapter 2 • Interacting with the Windows PowerShell Command Line

62

#Pause script execution and wait for the player to press the Enter key

Read-Host

#Clear the Windows command console screen

Clear-Host

Take note of the variable names that are embedded inside the Write-Host statements that

displayed the story text. When executed, each of these variables will automatically be

replaced with the text string input provided by the user earlier in the script file. To help

make the locations of these variables stand out, I have made them bold.

Summary
This chapter has covered a number of different PowerShell topics designed to help you

develop a solid understanding of how to interact with the PowerShell command line. You

learned how to configure the Windows command console in order to customize your work-

ing environment. You learned how to configure the Window command shell to automati-

cally use your Windows PowerShell script folder as your default working directory. You also

learned how to work with tab completion and to use Windows PowerShell to navigate and

access different types of system resources, including the Windows registry and environment

variables.

Now, before you move on to Chapter 3, “Object-Based Scripting with .NET,” I suggest you set

aside a few extra minutes to work on and improve The Story of the Three Amigos by imple-

menting the following challenges.

Windows PowerShell Programming for the Absolute Beginner

C H A L L E N G E S

1. For starters, consider prompting the user to provide additional inputs and use
her answers to further increase the unpredictability of the story.

2. Consider rewriting the story’s ending to make it more exciting or to give it an
unexpected and humorous twist.

3. Lastly, don’t forget to modify the author credits by using your own name.
In addition, you might want to add some additional information such as your
website’s URL or your e-mail address.

Object-Based
Scripting with .NET

3
C H A P T E R

W
indows PowerShell is tightly integrated with Microsoft’s .NET Framework,

which provides much of the supporting environment required to develop

Windows applications and scripts. In this chapter you will learn how

Windows PowerShell leverages .NET resources. You learn about the .NET class

library and common language runtime. You will learn how to execute cmdlets

and to use cmdlets to access object properties and methods. You will also review

cmdlet aliases and learn how to create your own custom aliases. On top of all

this, you will learn how to programmatically customize the Windows PowerShell

and to develop the PowerShell Fortune Teller game.

Specifically, you will learn:

• How to create a profile.ps1 script file and use it to customize Windows

PowerShell

• More background information regarding Windows PowerShell’s integration

with .NET

• How to use object pipelines to pass structured data between cmdlets

• How to create custom aliases

C H A P T E R

64 Windows PowerShell Programming for the Absolute Beginner

Project Preview: The PowerShell Fortune Teller Game
This chapter’s game project is the PowerShell Fortune Teller game. This game simulates a

session with a virtual fortune teller who listens to player questions and then provides

answers. The answers provided vary based on the fortune teller’s mood, which changes

based on the time of day that questions are asked. All questions are expected to be posed in

such a way that Yes/No styled answers can be applied.

When first started, the game displays the welcome screen shown in Figure 3.1.

Pressing Enter dismisses the welcome screen. Next, instructions are displayed that provide the

player with guidance regarding the proper way to formulate questions, as shown in Figure 3.2.

Next, the player is prompted to ask her question, as shown in Figure 3.3.

Figure 3.1

The PowerShell
Fortune Teller

game’s welcome
screen.

Figure 3.2

Players are given
guidance on how

to formulate
questions.

In response, the game randomly selects 1 of 8 possible answers and displays it, as demon-

strated in Figure 3.4.

The player is then prompted to either press Enter to ask the fortune teller another question

or type Q to end the game, as shown in Figure 3.5.

65Chapter 3 • Object-Based Scripting with .NET

Figure 3.3

Players are
expected to ask
questions that

can be addressed
with Yes/No

styled answers.

Figure 3.4

The fortune teller
responds with a

variety of
answers.

Figure 3.5

Players may ask
the fortune teller

as many
questions as

they wish.

66 Windows PowerShell Programming for the Absolute Beginner

The game ends by displaying a message suggesting that the player return and play again, as

shown in Figure 3.6.

One Last PowerShell Customization Technique
Before we jump deep into a review of the .NET Framework and how Windows PowerShell

uses cmdlets to access .NET resources, let’s spend a few more minutes taking a look at one

additional way in which you can customize Windows PowerShell. Only this time, instead of

focusing on manual configuration, we’ll look at how to programmatically script PowerShell

configuration.

As you learned in Chapter 2, “Interacting with the Windows PowerShell Command Line,”

you can customize your Windows PowerShell working environment by making changes to a

PowerShell shortcut in order to redirect it to a default working directory of your choice.

Chapter 2 also showed you how to manually configure PowerShell attributes affecting cur-

sor size, command history, font type and size, console size, as well as its color scheme.

In addition to manually configuring the Windows command console using the Windows

PowerShell Properties window, you can also programmatically configure your PowerShell

environment. To do so, you create a PowerShell script file named profile.ps1 and store it in

one of the following folders.

• C:\Windows\System32\WindowsPowerShell\v1.0

• C:\Documents and Settings\UserName\My Documents\WindowsPowerShell

If you create a profile.ps1 script and store it in the first folder listed above (C:\Windows\

system32\WindowsPowerShell\v1.0), it will automatically be run for every user of the

Figure 3.6

The game ends
after inviting the
player to return

and ask more
questions.

computer each time a new Windows PowerShell session is started. If you create and store a

profile.ps1 script in an individual user’s My Documents\WindowsPowerShell folder, the

PowerShell script will execute each time that user starts a new Windows PowerShell session

but will not execute for other users.

By developing a profile.ps1 script, computer administrators can manage large numbers of

computers by remotely deploying the script file to any number of computers, thus elimi-

nating the need to visit and configure individual computers. For example, you might create

a PowerShell script file similar to the following example and then distribute it to the

C:\Windows\system32\WindowsPowerShell\v1.0 folder on all corporate computers to help

ensure awareness of corporate computer policy.

#

Script Name: Profile.ps1 (PowerShell Profile configuration Scripts)

Version: 1.0

Author: Jerry Lee Ford, Jr.

Date: January 1, 2007

Description: This PowerShell script contains commands that customize

the Windows PowerShell execution environment.

#

#Create a custom alias command

Set-Alias ds Write-Host

#Clear the Windows command console screen

Clear-Host

#Display custom greeting

ds

ds “This computer and network are private. By using this computer you agree”

ds “to all terms outlined in the company’s security policy. Failure to comply”

ds “with these policies may result in criminal prosecution.”

ds

67Chapter 3 • Object-Based Scripting with .NET

68

When executed, this script creates a custom alias named ds, which creates a shortcut to the

Write-Host cmdlet. You will learn more about aliases and how to create them later in this

chapter. Next, the screen is cleared and then, using the newly created alias, a message is dis-

played regarding the company’s security policy. Figure 3.7 demonstrates what the user will

see each time a new Windows PowerShell session is started.

The Microsoft .NET Framework
The .NET Framework is a core component of modern Windows PowerShell scripting. Version

2 of the .NET Framework is a requirement for PowerShell script execution. It is therefore

important that PowerShell programmers have a solid understanding of the .NET Frame-

work’s major components and the services it provides. For starters, .NET is a Microsoft

framework designed to support desktop, network, and Internet-based applications and

scripts. .NET also supports the development of mobile applications for devices such as PDAs.

A framework is a collection of resources that facilitates the development of
scripts and programs. The purpose of a framework is to alleviate much of the
complexity involved in developing new programs and scripts by providing pro-
grammers access to a predefined collection of services and resources, allowing
programmers to instead focus on the higher level logic required to solve a spe-
cific problem.

The .NET Framework is designed to support the development of applications and scripts in

conjunction with any .NET-compliant application or script-development programming

language. In fact, Microsoft has generated an entire suite of application-programming lan-

guages built around the .NET Framework. These languages include Visual Basic, C++, C#,

and J#. Microsoft is promoting the .NET Framework as a key component in all its new

HINT

Windows PowerShell Programming for the Absolute Beginner

Figure 3.7

Ensuring user
awareness of

security policy
at Windows
PowerShell

startup.

programming languages. It should be no surprise, therefore that Microsoft decided to

integrate support for .NET Framework into Windows PowerShell, giving it and its scripting

language instant access to a enormous range of resources and commands.

Key .NET Framework Components
The .NET Framework acts as an interface between Windows PowerShell and the operating

system. .NET is responsible for translating script code into a format that can be executed on

your computer. Figure 3.8 shows the role the .NET Framework plays in supporting applica-

tion and script development.

The .NET Framework consists of two key components, as outlined here.

• .NET Framework class library

• CLR (common language runtime)

Don’t be too worried if there are elements in Figure 3.8 that you don’t understand. I will

cover each in detail in the sections that follow.

The .NET Class Library
Traditional command shells have a very limited recognition of data, typically recognizing

only strings and numbers. However, Windows PowerShell enforces the use of tightly struc-

tured data. As a result, Windows PowerShell can work with many different types of data

including, strings, dates, integers, floating-point numbers, Boolean data, and so on.

69Chapter 3 • Object-Based Scripting with .NET

Figure 3.8

The .NET
Framework

provides
Windows

PowerShell
scripts with

access to system
resources and
commands for

accessing those
resources.

70

Structured data is also a key feature of the .NET Framework. With .NET, structured data is

grouped into different collections to define complex structured classes. Classes are then used

as a template for creating objects, which represent things that Windows PowerShell can

access and manipulate. An object is a self-contained resource that contains information

about itself as well as the code required to access and manipulate it. For example, a file,

folder, and disk drive are all treated as objects by Windows PowerShell.

Objects have certain attributes or properties that define a particular characteristic of the

object. For example, folders have names. Objects also provide access to predefined collec-

tions of code, referred to as methods, which can be executed in order to interact with and

control the object. For example, a file object provides access to methods that can be used to

perform all sorts of actions on the file, including opening, closing, and deleting it.

The Common Language Runtime
The common language runtime or CLR is responsible for converting Windows PowerShell

scripts into an executable format that your computer can understand and run. The CLR also

provides Windows PowerShell with other services, including:

• Compiling

• Security

• Memory Management

• Exception Handling

Accessing .NET Framework Resources
Windows PowerShell provides access to .NET Framework resources through cmdlets.

Cmdlets provide access to .NET resources while at the same time hiding much of the com-

plexity involved. As a PowerShell programmer, you do not have to worry about specific .NET

classes or their properties and methods. All that you have to do is know which cmdlets to

use in order to get at the type of resources required by your scripts. To see what I mean, con-

sider the following series of examples.

In this first example, let’s execute the Get-ChildItem cmdlet. The Get-ChildItem cmdlet

retrieves a listing of objects representing each file and subfolder stored in the current work-

ing directory. The .NET Framework stores a lot of information, or properties, about file

objects. However, by default, Windows PowerShell only displays a few of these properties, as

demonstrated here.

PS C:\MyScripts> Get-ChildItem

Windows PowerShell Programming for the Absolute Beginner

Directory: Microsoft.PowerShell.Core\FileSystem::C:\MyScripts

Mode LastWriteTime Length Name

—— ——————- ——— ——

-a—- 9/24/2006 4:31 PM 3416 FortuneTeller.ps1

-a—- 9/10/2006 1:42 PM 1077 KnockKnock.ps1

-a—- 9/25/2006 1:28 PM 832 profile.ps1

-a—- 9/23/2006 5:22 PM 7598 ThreeAmigos.ps1

-a—- 9/9/2006 2:10 PM 130 UserInput.ps1

PS C:\MyScripts>

Here, the Mode, LastWriteTime, Length, and Name properties for each file object are displayed.

Next, let’s focus on a specific file, as shown here.

PS C:\MyScripts> Get-ChildItem profile.ps1

Directory: Microsoft.PowerShell.Core\FileSystem::C:\MyScripts

Mode LastWriteTime Length Name

—— ——————- ——— ——

-a—- 9/25/2006 1:28 PM 832 profile.ps1

PS C:\MyScripts>

In this example, profile.ps1 was passed as an argument to the Get-ChildItem cmdlet. As a

result, only property information for that file object is played. Now that we are focused on

the properties for a specific object, let’s poke a little deeper and see what other types of

property information .NET keeps for this object. The following example takes the output

generated by the Get-ChildItem cmdlet and passes it to the Get-Member cmdlet. The Get-Member

cmdlet is then passed an argument named –MemberType. This argument can take on differ-

ent values. In this example, a value of Property is specified. The end result is the display of

properties that the .NET Framework has for this particular file.

Remember that Windows PowerShell views most everything as an object and
objects have attributes that describe features of the object. The attributes are
commonly referred to as object properties. As the preceding example demon-
strated, most cmdlets allow you to pass data for processing in the form of argu-
ments. In addition, most cmdlets return object data as command output. In the
next example, the object data output generated by the Get-ChildItem cmdlet is
passed as an argument to the Get-Member cmdlet for further processing.

HINT

71Chapter 3 • Object-Based Scripting with .NET

72

PS C:\MyScripts> Get-ChildItem profile.ps1 | Get-Member -MemberType Property

TypeName: System.IO.FileInfo

Name MemberType Definition

—— ————— —————

Attributes Property System.IO.FileAttributes Attributes {get;set;}

CreationTime Property System.DateTime CreationTime {get;set;}

CreationTimeUtc Property System.DateTime CreationTimeUtc {get;set;}

Directory Property System.IO.DirectoryInfo Directory {get;}

DirectoryName Property System.String DirectoryName {get;}

Exists Property System.Boolean Exists {get;}

Extension Property System.String Extension {get;}

FullName Property System.String FullName {get;}

IsReadOnly Property System.Boolean IsReadOnly {get;set;}

LastAccessTime Property System.DateTime LastAccessTime {get;set;}

LastAccessTimeUtc Property System.DateTime LastAccessTimeUtc {get;set;}

LastWriteTime Property System.DateTime LastWriteTime {get;set;}

LastWriteTimeUtc Property System.DateTime LastWriteTimeUtc {get;set;}

Length Property System.Int64 Length {get;}

Name Property System.String Name {get;}

PS C:\MyScripts>

As you can see, the .NET Framework stores a lot of properties that are not automatically dis-

played by the Get-Childitem cmdlet. However, this information is readily available to you, as

the next example demonstrates.

PS C:\MyScripts> Get-ChildItem profile.ps1 | Select-Object name,extension,

directory

Name Extension Directory

—— ————- ————-

profile.ps1 .ps1 C:\MyScripts

PS C:\MyScripts>

In this example, the Get-ChildItem cmdlet is once again used to retrieve information about

the profile.pls file. However, this time the Select-Object cmdlet is used to retrieve and dis-

play different object properties, specifically the Name, Extension, and Directory properties.

Windows PowerShell Programming for the Absolute Beginner

Note that these names of the specific properties to be retrieved were passed as a comma-

separated list of arguments.

The Select-Object cmdlet provides the ability to determine which objects being
passed through the pipeline are kept or discarded. In the previous example,
all objects returned by the Get-ChildItem cmdlet are discarded except for
profile.ps1.

In short, unlike traditional command shells, which pass only a limited amount of data back

in a simple text format, Windows PowerShell cmdlets provide you with direct access to all

kinds of behind-the-scenes object information.

As previously stated, .NET Framework classes define all of the properties and methods asso-

ciated with each object associated with a particular class. As such, you can also retrieve a

listing of all the methods associated with a given object, as demonstrated next.

PS C:\MyScripts> Get-ChildItem profile.ps1 | Get-Member -MemberType Method

TypeName: System.IO.FileInfo

Name MemberType Definition

—— ————— —————

AppendText Method System.IO.StreamWriter AppendText()

CopyTo Method System.IO.FileInfo CopyTo(String destFi...

Create Method System.IO.FileStream Create()

CreateObjRef Method System.Runtime.Remoting.ObjRef CreateOb...

CreateText Method System.IO.StreamWriter CreateText()

Decrypt Method System.Void Decrypt()

Delete Method System.Void Delete()

Encrypt Method System.Void Encrypt()

Equals Method System.Boolean Equals(Object obj)

get_Attributes Method System.IO.FileAttributes get_Attributes()

get_CreationTime Method System.DateTime get_CreationTime()

get_CreationTimeUtc Method System.DateTime get_CreationTimeUtc()

get_Directory Method System.IO.DirectoryInfo get_Directory()

get_DirectoryName Method System.String get_DirectoryName()

get_Exists Method System.Boolean get_Exists()

get_Extension Method System.String get_Extension()

get_FullName Method System.String get_FullName()

get_IsReadOnly Method System.Boolean get_IsReadOnly()

get_LastAccessTime Method System.DateTime get_LastAccessTime()

HINT

73Chapter 3 • Object-Based Scripting with .NET

74

get_LastAccessTimeUtc Method System.DateTime get_LastAccessTimeUtc()

get_LastWriteTime Method System.DateTime get_LastWriteTime()

get_LastWriteTimeUtc Method System.DateTime get_LastWriteTimeUtc()

get_Length Method System.Int64 get_Length()

get_Name Method System.String get_Name()

GetAccessControl Method System.Security.AccessControl.FileSecur...

GetHashCode Method System.Int32 GetHashCode()

GetLifetimeService Method System.Object GetLifetimeService()

GetObjectData Method System.Void GetObjectData(Serialization...

GetType Method System.Type GetType()

InitializeLifetimeService Method System.Object InitializeLifetimeService()

MoveTo Method System.Void MoveTo(String destFileName)

Open Method System.IO.FileStream Open(FileMode mode...

OpenRead Method System.IO.FileStream OpenRead()

OpenText Method System.IO.StreamReader OpenText()

OpenWrite Method System.IO.FileStream OpenWrite()

Refresh Method System.Void Refresh()

Replace Method System.IO.FileInfo Replace(String desti...

set_Attributes Method System.Void set_Attributes(FileAttribut...

set_CreationTime Method System.Void set_CreationTime(DateTime v...

set_CreationTimeUtc Method System.Void set_CreationTimeUtc(DateTim...

set_IsReadOnly Method System.Void set_IsReadOnly(Boolean value)

set_LastAccessTime Method System.Void set_LastAccessTime(DateTime...

GetLifetimeService Method System.Object GetLifetimeService()

GetObjectData Method System.Void GetObjectData(Serialization...

GetType Method System.Type GetType()

InitializeLifetimeService Method System.Object InitializeLifetimeService()

MoveTo Method System.Void MoveTo(String destFileName)

Open Method System.IO.FileStream Open(FileMode mode...

OpenRead Method System.IO.FileStream OpenRead()

OpenText Method System.IO.StreamReader OpenText()

OpenWrite Method System.IO.FileStream OpenWrite()

Refresh Method System.Void Refresh()

Replace Method System.IO.FileInfo Replace(String desti...

set_Attributes Method System.Void set_Attributes(FileAttribut...

set_CreationTime Method System.Void set_CreationTime(DateTime v...

set_CreationTimeUtc Method System.Void set_CreationTimeUtc(DateTim...

Windows PowerShell Programming for the Absolute Beginner

set_IsReadOnly Method System.Void set_IsReadOnly(Boolean value)

set_LastAccessTime Method System.Void set_LastAccessTime(DateTime...

set_LastAccessTimeUtc Method System.Void set_LastAccessTimeUtc(DateT...

set_LastWriteTime Method System.Void set_LastWriteTime(DateTime ...

set_LastWriteTimeUtc Method System.Void set_LastWriteTimeUtc(DateTi...

SetAccessControl Method System.Void SetAccessControl(FileSecuri...

ToString Method System.String ToString()

PS C:\MyScripts>

As you can see, in this example the value passed as the –MemberType argument to the Select-

Object cmdlet was changed from property to Method.

If all this talk about the .Net Framework, classes, objects, properties, and methods seems

confusing or overwhelming, don’t be alarmed. It takes times to fully understand and com-

prehend all this new technology. However, the good news is that as a Windows PowerShell

programmer, you needn’t be directly focused on .NET. Instead, all you have to do is become

comfortable with working with cmdlets and let the .NET Framework worry about all the

underlying complexities.

You can learn more about the .NET Framework by visiting
www.microsoft.com/net.

Executing Cmdlets
Cmdlets are key Windows PowerShell resources that provide access to .NET Framework

resources. In total, there are over 100 cmdlets. Windows PowerShell cmdlets provide access

to a host of commands, each of which is designed to perform a singular task. Individually,

cmdlets provide access to specific resources and commands. However, the real power pro-

vided by cmdlets comes when they are used together as building blocks to formulate com-

plex tasks.

You will learn more about how Windows PowerShell lets you combine cmdlets into complex

statements in the next section. However, in order to work with the Windows PowerShell and

to write PowerShell scripts, it helps to know a little something about each of the cmdlets

that PowerShell makes available to you. To help you out, I have provided a complete list of

PowerShell cmdlets in Table 3.1, along with a brief explanation of what each cmdlet does.

HINT

75Chapter 3 • Object-Based Scripting with .NET

www.microsoft.com/net

76 Windows PowerShell Programming for the Absolute Beginner

Cmdlet Description

Add-Content Adds to the content(s) of the specified item(s).

Add-History Adds entries to the session history.

Add-Member Adds a user-defined custom member to an object.

Add-PSSnapIn Adds one or more PSSnapIn(s) (containing additional collections of
providers or cmdlets) to the current Ps console.

Clear-Content Removes the content from an item or file while leaving the file intact.

Clear-Item Sets the item(s) at the specified location to the "clear" value
specified by the provider.

Clear-ItemProperty Removes the property value from a property.

Clear-Variable Removes the value from a variable.

Compare-Object Compares the properties of objects.

ConvertFrom-SecureString Exports a secure string to a safe, persistent format.

Convert-Path Converts the path of the item given from a Ps path to a provider path.

ConvertTo-Html Converts the input to an HTML table.

ConvertTo-SecureString Creates a secure string from a normal string created by Export-
SecureString.

Copy-Item Calls a provider to copy an item from one location to another within
a namespace.

Copy-ItemProperty Copies a property between locations or namespaces.

Export-Alias Exports an alias list to a file.

Export-Clixml Produces a clixml representation of a Ps object or objects.

Export-Console Exports the changes made to the current console. This action
overwrites any existing console file.

Export-CSV Exports CSV strings from input.

ForEach-Object Applies script blocks to each object in the pipeline.

Format-Custom Formats output display as defined in additions to the formatter file.

Format-List Formats objects as a list of their properties displayed vertically.

Format-Table Formats the output as a table.

Format-Wide Formats objects as a table of their properties.

Get-ACL Gets the access control list (ACL) associated with a file or object.

Get-Alias Returns alias names for cmdlets.

TA B L E 3 .1 W I N D O W S P O W E R S H E L L C M D L E T S

77Chapter 3 • Object-Based Scripting with .NET

TA B L E 3 .1 W I N D O W S P O W E R S H E L L C M D L E T S (C O N T I N U E D)

Cmdlet Description

Get-AuthenticodeSignature Gets the signature object associated with a file.

Get-ChildItem Retrieves the child items of the specified location(s) in a drive.

Get-Command Retrieves basic information about a command.

Get-Content Gets the content from the item at the specified location.

Get-Credential Gets a credential object based on a password.

Get-Culture Gets the culture information.

Get-Date Gets the current date and time.

Get-EventLog Gets event log data for the machine.

Get-ExecutionPolicy Gets the effective execution policy for the current shell.

Get-Help Opens the help files.

Get-History Gets a listing of the session history.

Get-Host Gets host information.

Get-Item Returns an object that represents an item in a namespace.

Get-ItemProperty Retrieves the properties of an object.

Get-Location Displays the current location.

Get-Member Enumerates the properties, methods, typeinfo, and property sets of
the objects given to it

Get-PfxCertificate Gets the PFX certificate information.

Get-Process Gets a list of processes on a machine.

Get-PSDrive Gets the drive information (DriveInfo) for the specified Ps drive.

Get-PSProvider Gets information for the specified provider.

Get-PSSnapIn Lists registered PSSnapIns.

Get-Service Gets a list of services.

Get-TraceSource Lists properties for given trace sources.

Get-UICulture Gets the UI culture information.

Get-Unique Gets the unique items in a sorted list.

Get-Variable Gets a Ps variable.

Get-WmiObject Produces a WMI object or the list of WMI classes available on the
system.

78 Windows PowerShell Programming for the Absolute Beginner

Cmdlet Description

Group-Object Groups the objects that contain the same values for a common property.

Import-Alias Imports an alias list from a file.

Import-Clixml Imports a clixml file and rebuilds the Ps object.

Import-CSV Takes values from a CSV list and sends objects down the pipeline.

Invoke-Expression Executes a string as an expression.

Invoke-History Invokes a previously executed command.

Invoke-Item Invokes an executable or opens a file.

Join-Path Combines path elements into a single path.

Measure-Command Tracks the running time for script blocks and cmdlets.

Measure-Object Measures various aspects of objects or their properties.

Move-Item Moves an item from one location to another.

Move-ItemProperty Moves a property from one location to another.

New-Alias Creates a new cmdlet-alias pairing.

New-Item Creates a new item in a namespace.

New-ItemProperty Sets a new property of an item at a location.

New-Object Creates a new .NET object.

New-PSDrive Installs a new drive on the computer.

New-Service Creates a new service.

New-TimeSpan Creates a timespan object.

New-Variable Creates a new variable.

Out-Default Sends output to the default formatter.

Out-File Sends command output to a file.

Out-Host Sends the pipelined output to the host.

Out-Null Sends output to a null.

Out-Printer Sends the output to a printer.

Out-String Sends output to the pipeline as strings.

Pop-Location Changes the current working location to the location specified by the
last entry pushed onto the stack.

Push-Location Pushes a location to the stack.

TA B L E 3 .1 W I N D O W S P O W E R S H E L L C M D L E T S (C O N T I N U E D)

79Chapter 3 • Object-Based Scripting with .NET

Cmdlet Description

Read-Host Reads a line of input from the host console.

Remove-Item Calls a provider to remove an item.

Remove-ItemProperty Removes a property and its value from the location.

Remove-PSDrive Removes a drive from its location.

Remove-PSSnapIn Removes PSSnapIn(s) from the current console process.

Remove-Variable Removes a variable and its value.

Rename-Item Changes the name of an existing item.

Rename-ItemProperty Renames a property at its location.

Resolve-Path Resolves the wildcard characters in a path.

Restart-Service Restarts a stopped service.

Resume-Service Resumes a suspended service.

Select-Object Selects objects based on parameters set in the cmdlet command
string.

Select-String Lets you search through strings or files for patterns.

Set-ACL Sets a resource's Access Control List properties.

Set-Alias Maps an alias to a cmdlet.

Set-AuthenticodeSignature Places an authenticode signature in a Ps script or other file.

Set-Content Sets the content in the item at the specified location.

Set-Date Sets the system date on the host system.

Set-ExecutionPolicy Sets the execution policy for the current shell.

Set-Item Sets the value of a pathname within a provider to the specified
value.

Set-ItemProperty Sets a property at the specified location to a specified value.

Set-Location Sets the current working location to a specified location.

Set-PSDebug Turns Ps script debugging features on and off, and sets trace level.

Set-Service Makes and sets changes to the properties of a service.

Set-TraceSource Sets or removes the specified options and trace listeners from the
specified trace source instance(s).

Set-Variable Sets data in a variable and creates a variable if one with the
requested name does not exist.

TA B L E 3 .1 W I N D O W S P O W E R S H E L L C M D L E T S (C O N T I N U E D)

80 Windows PowerShell Programming for the Absolute Beginner

Cmdlet Description

Sort-Object Sorts the input objects by property values.

Split-Path Given a Ps path(s), it streams a string with the qualifier, parent path, or
leaf item.

Start-Service Starts a stopped service.

Start-Sleep Suspends shell, script, or runspace activity for the specified period of time.

Start-Transcript Starts a transcript of a command shell session.

Stop-Process Stops a running process.

Stop-Service Stops a running service.

Stop-Transcript Stops the transcription process.

Suspend-Service Suspends a running service.

Tee-Object Sends input objects to two places.

Test-Path Returns true if the path exists; otherwise, it returns false.

Trace-Command Enables tracing of the specified trace source instance(s) for the duration
of the expression or command.

Update-FormatData Updates and appends format data files.

Update-TypeData Updates the types.ps1xml file in the Microsoft shell.

Where-Object Filters the input from the pipeline, allowing operation on only certain
objects.

Write-Debug Writes a debug message to the host display.

Write-Error Writes an error object and sends it to the pipeline.

Write-Host Displays objects through the user feedback mechanism.

Write-Output Writes an object to the pipeline.

Write-Progress Sends a progress record to the host.

Write-Verbose Writes a string to the host's verbose display.

Write-Warning Writes a warning message.

TA B L E 3 .1 W I N D O W S P O W E R S H E L L C M D L E T S (C O N T I N U E D)

Although all the cmdlets listed in Table 3.1 are shown using initial uppercase spelling,

cmdlets are not case sensitive. Therefore, the case that you use when keying them in is

entirely up to you. While you shouldn’t try to memorize this entire list of cmdlets, it is prob-

ably a good idea to bookmark this table so that you can come back to it when you need to.

Once you have found a cmdlet that looks like it will suit the needs of your particular task,

you can use the PowerShell Get-Help cmdlet to learn more about it. For example, Figure 3.9

shows a portion of the output that you will see when using the Get-Help cmdlet to look up

information about the Write-Host cmdlet.

The Get-Help cmdlet retrieves information about any cmdlet or PowerShell
topic. When executed without any parameters, this cmdlet displays a list of
help topics. When passed a cmdlet name or topic, it displays information spe-
cific to that cmdlet or topic.

If you do not have this book handy, you can use the Get-Command cmdlet to
generate a complete list of available cmdlets. You can then use the Get-Help
command to look up detailed information on any cmdlet that you see in the list.

Windows PowerShell Plumbing
Object pipelines are the conduit through which cmdlets pass object data to one another.

Unlike traditional command shells, which only pass text data, Windows PowerShell passes

different types of object data through its pipeline. You have already seen many examples of

PowerShell object pipelines in use. The following examples are designed to further help you

understand the versatility and power of PowerShell pipelines.

TRICK

HINT

81Chapter 3 • Object-Based Scripting with .NET

Figure 3.9

An example of
how to use the
Get-Help cmdlet

to look up
detailed cmdlet

information.

82

Let’s begin by using the Get-ChildItem cmdlet to generate a list of files and folders located

in the current working directory, as demonstrated here.

PS C:\> Get-ChildItem

Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name

—— ——————- ——— ——

-a—- 4/10/2003 1:19 AM 0 AUTOEXEC.BAT

-a—- 4/10/2003 1:19 AM 0 CONFIG.SYS

-a—- 10/11/2004 9:01 PM 1810432 ffastunT.ffl

-a—- 2/20/2006 1:52 PM 1323 net_save.dna

-a—- 6/24/2005 9:39 PM 584 Plugins

-a—- 3/25/2005 3:29 PM 108 PS.PS

d—— 4/10/2003 1:22 AM Documents and Settings

d—— 6/4/2003 8:58 PM I386

d—— 9/10/2006 3:19 PM MyScripts

d-r— 9/9/2006 5:10 PM Program Files

d—— 4/21/2006 3:53 PM temp

d—— 9/15/2006 1:56 PM WINDOWS

PS C:\>

Pipelines are created using the | character. Using pipelines, you can combine two or more

cmdlets together to compose a logical statement that takes advantage of the combined capa-

bilities of both cmdlets. For example, consider the following statement that takes the out-

put generated by the Get-ChildItem cmdlet and passes it to the Sort-Object cmdlet.

PS C:\> Get-ChildItem | Sort-Object

Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name

—— ——————- ——— ——

-a—- 4/10/2003 1:19 AM 0 AUTOEXEC.BAT

-a—- 4/10/2003 1:19 AM 0 CONFIG.SYS

d—— 4/10/2003 1:22 AM Documents and Settings

-a—- 10/11/2004 9:01 PM 1810432 ffastunT.ffl

d—— 6/4/2003 8:58 PM I386

d—— 9/10/2006 3:19 PM MyScripts

Windows PowerShell Programming for the Absolute Beginner

83Chapter 3 • Object-Based Scripting with .NET

-a—- 2/20/2006 1:52 PM 1323 net_save.dna

-a—- 6/24/2005 9:39 PM 584 Plugins

d-r— 9/9/2006 5:10 PM Program Files

-a—- 3/25/2005 3:29 PM 108 PS.PS

d—— 4/21/2006 3:53 PM temp

d—— 9/15/2006 1:56 PM WINDOWS

PS C:\>

The Sort-Object cmdlet sorts a list of objects passed to it by other cmdlets,
thus changing the order in which objects are passed down the pipeline. In the
previous example, the sort operation was performed using the Name property.
However, you can override this by specifying a different property. Likewise, you
can change the default sort order from ascending to descending. To learn more
about the Sort-Object cmdlet, type Get-Help Sort-Object at the Windows
PowerShell command prompt.

As you can see, the output from the Get-ChildItem cmdlet has been removed from the

pipeline, sorted, and then added back in ascending order by the Sort-Object cmdlet. Now

that you have a sorted list of objects, let’s process them even further. In this next example,

the sorted list of objects in the pipeline is next processed by the Where-Object cmdlet.

PS C:\> Get-ChildItem | Sort | Where-Object { $_.Length -gt 200 }

Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name

—— ——————- ——— ——

-a—- 10/11/2004 9:01 PM 1810432 ffastunT.ffl

-a—- 2/20/2006 1:52 PM 1323 net_save.dna

-a—- 6/24/2005 9:39 PM 584 Plugins

PS C:\>

In this example, the Where-Object cmdlet, which removes objects failing to meet a specified

criteria from the pipeline, is passed an expression enclosed within matching {} brackets.

This expression takes each object passed through the pipelines, as represented by $_, and

examines the value of its Length property to see if it is greater than 200. Note the use of the

period (.) to connect the $_ to the keyword Length. This is an example of dot notation, which

is simply a syntax used to identify an object property.

HINT

84 Windows PowerShell Programming for the Absolute Beginner

Again, don’t get too hung up on the syntax used in the previous example to build the expres-

sion passed as an argument to the Where-Object cmdlet. You will learn everything you need

to know about PowerShell statement syntax in Chapters 4–7. For now, the important thing to

take away from this example is an understanding of pipelines and their use in passing struc-

tures between cmdlets in order to build complex logical statements.

The Where-Object cmdlet provides the ability to filter out unwanted objects
from the pipelines based on input passed to it as an argument. In the previous
example, the Where-Object cmdlet was instructed to remove any object whose
Length property was less than 200 bytes.

$_ is a special variable created and maintained by Windows PowerShell. $_ is
automatically assigned the name of the current object in the PowerShell
pipeline and, in the case of the Where-Object cmdlet, to reference each object
in a collection. In the previous example, the collection was composed of every
file in the current working directory.

Working with Aliases
As you have already seen with the Get-ChildItem cmdlet, the Windows PowerShell provides

access to two different alias commands (dir and ls), each of which can be executed in place

of this cmdlet in order to produce the same results. An alias is a shortcut to another cmdlet.

Microsoft developed these aliases to help ease the transition from traditional command

shells to Windows PowerShell. Table 3.2 provides you with a quick reference to all the aliases

supported by the Windows PowerShell.

You can use the Get-Alias cmdlet to display a list of all the aliases supported
by Windows PowerShell.

TRICK

TRICK

HINT

Alias Cmdlet Alias Cmdlet

ac Add-Content rp Remove-ItemProperty

asnp Add-PSSnapIn rsnp Remove-PSSnapIn

clc Clear-Content rv Remove-Variable

TA B L E 3 . 2 W I N D O W S P O W E R S H E L L C M D L E T A L I A S E S

85Chapter 3 • Object-Based Scripting with .NET

Alias Cmdlet Alias Cmdlet

cli Clear-Item rvpa Resolve-Path

clp Clear-ItemProperty sal Set-Alias

clv Clear-Variable sasv Start-Service

cpi Copy-Item sc Set-Content

cpp Copy-ItemProperty select Select-Object

cvpa Convert-Path si Set-Item

diff Compare-Object sl Set-Location

epal Export-Alias sleep Start-Sleep

epcsv Export-Csv sort Sort-Object

fc Format-Custom sp Set-ItemProperty

fl Format-List spps Stop-Process

foreach ForEach-Object spsv Stop-Service

% ForEach-Object sv Set-Variable

ft Format-Table tee Tee-Object

fw Format-Wide where Where-Object

gal Get-Alias ? Where-Object

gc Get-Content write Write-Output

gci Get-ChildItem cat Get-Content

gcm Get-Command cd Set-Location

gdr Get-PSDrive clear Clear-Host

ghy Get-History cp Copy-Item

gi Get-Item h Get-History

gl Get-Location history Get-History

gm Get-Member kill Stop-Process

gp Get-ItemProperty lp Out-Printer

gps Get-Process ls Get-ChildItem

group Group-Object mount New-PSDrive

gsv Get-Service mv Move-Item

gsnp Get-PSSnapIn popd Pop-Location

TA B L E 3 . 2 W I N D O W S P O W E R S H E L L C M D L E T A L I A S E S (C O N T I N U E D)

86

As you can see in Table 3.2, the list of aliases supported by Windows PowerShell is quite

extensive. While convenient as a short-term solution for executing cmdlets, I suggest that

you resist the temptation of using these aliases and instead take the time needed to learn

the PowerShell’s cmdlet names. This will help make your PowerShell scripts easier to main-

tain and support in the long run.

Windows PowerShell Programming for the Absolute Beginner

Alias Cmdlet Alias Cmdlet

gu Get-Unique ps Get-Process

gv Get-Variable pushd Push-Location

gwmi Get-WmiObject pwd Get-Location

iex Invoke-Expression r Invoke-History

ihy Invoke-History rm Remove-Item

ii Invoke-Item rmdir Remove-Item

ipal Import-Alias echo Write-Output

ipcsv Import-Csv cls Clear-Host

mi Move-Item chdir Set-Location

mp Move-ItemProperty copy Copy-Item

nal New-Alias del Remove-Item

ndr New-PSDrive dir Get-ChildItem

ni New-Item erase Remove-Item

nv New-Variable move Move-Item

oh Out-Host rd Remove-Item

rdr Remove-PSDrive ren Rename-Item

ri Remove-Item set Set-Variable

rni Rename-Item type Get-Content

rnp Rename-ItemProperty

TA B L E 3 . 2 W I N D O W S P O W E R S H E L L C M D L E T A L I A S E S (C O N T I N U E D)

Windows PowerShell also lets you define your own custom aliases. This is
accomplished using the Get-Alias cmdlet, which requires two arguments. The
first argument is the alias to be assigned and the second argument is the name
of the cmdlet for which the alias is to be associated. For example, the following
statements create a new alias of ds for the Write-Host cmdlet.

Set-Alias ds Write-Host

You may recollect seeing an example of this in action earlier in this chapter when
you read about how to programmatically customize Windows PowerShell.

Windows PowerShell does not perform any verification of the validity of an
alias assignment when using the Set-Alias cmdlet. It is up to you to test and
ensure that your new alias works as expected and that you did not mis-type the
name of the target cmdlet.

Back to the PowerShell Fortune Teller Game
Okay, it is time to turn your attention back to the chapter’s main game project, the Power-

Shell Fortune Teller game. This game will involve the use of a number of programming tech-

niques, conditional logic, and looping. You will also learn how to instantiate (establish a

new instance of) a new, random object in order to generate a random number.

Designing the Game
The PowerShell Fortune Teller game begins by displaying a welcome screen and then pro-

viding the player with instructions on how to formulate questions. Next, the player is

prompted to ask a question. In response, the game will display a randomly generated answer

based on the value of the script’s randomly generated number. The specific answer dis-

played by the script will also vary based on the time of day, since the fortune teller gets a bit

cranky in the afternoon. Once the player’s question has been answered, the script will

prompt the player to either ask a new question or terminate the script’s execution. Thus the

player is allowed to ask as many questions as he wants. Once the player indicates that he

wants to terminate the script, the game ends by inviting the player to return and play again.

The development of this script will be completed in six steps, as outlined here:

1. Create a new script file and add opening comment statements.

2. Clear the screen and initialize script variables.

3. Display the opening welcome screen.

4. Display the rules for formulating questions.

TRAP

TRICK

87Chapter 3 • Object-Based Scripting with .NET

88

5. Prompt the player to ask questions and then generate answers.

6. Invite the player to play again and terminate script execution.

Creating a New PowerShell Script
The first step in the creation of the PowerShell Fortune Teller game is to create a new

PowerShell file named FortuneTeller.ps1 and add the following statements to it.

#

Script Name: FortuneTeller.ps1 (PowerShell Fortune Teller)

Version: 1.0

Author: Jerry Lee Ford, Jr.

Date: January 1, 2007

Description: This PowerShell script provides random answers to player

questions.

#

#Clear the Windows command console screen

Clear-Host

As you can see, so far the PowerShell script file consists of comment statements that provide

high-level script documentation and execute the Clear-Host cmdlet, which is called to clear

the display area of the Windows command console.

Declaring and Initializing Variables
The next step in the creation of the PowerShell Fortune Teller game is to declare variables

used throughout the script and to assign initial values to these variables. This is accom-

plished by appending the following statements to the end of the PowerShell script file.

#Define the variables used in this script to collect player inputs

$question = “” #This variables will store the player’s question

$status = “Play” #This variable will be used to control game termination

$randomNo = New-Object System.Random #This variable stores a random object

$answer = 0 #This variable stores a randomly generated number

$time = (Get-Date).Hour #This variable stores the current hour of the day

Note that I have not only provided descriptive names for each variable but I have also added

comments that document the purpose and use of each variable.

Windows PowerShell Programming for the Absolute Beginner

Displaying the Welcome Screen
The next step in the development of the PowerShell Fortune Teller game is the addition of

the statements that display the game’s welcome screen. These statements, shown next,

should be added to the end of the script file.

#Display the game’s opening screen

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host “ W E L C O M E T O T H E W I N D O W S”

Write-Host

Write-Host

Write-Host

Write-Host “ P O W E R S H E L L F O R T U N E T E L L E R”

Write-Host

Write-Host

Write-Host

Write-Host “ By Jerry Lee Ford, Jr.”

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host “ Press Enter to continue.”

#Pause script execution and wait for the player to press the Enter key

Read-Host

The screen content is created using multiple instances of the Write-Host cmdlet. The last

statement shown above uses the Read-Host cmdlet to pause script execution until the player

presses the Enter key.

89Chapter 3 • Object-Based Scripting with .NET

90

Displaying Game Instructions
After reading and dismissing the game’s welcome screen, instructions need to be displayed

that provide the player with guidance on how to formulate questions for the fortune teller.

This is accomplished by added the following statements to the end of the script file.

#Clear the Windows command console screen

Clear-Host

#Provide the player with instructions

Write-Host

Write-Host “ The fortune teller is a very busy and impatient mystic. Make”

Write-Host

Write-Host “ your questions brief and simple and only expect to receive”

Write-Host

Write-host “ Yes / No styled answers.”

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host “ Press Enter to continue.”

#Pause script execution and wait for the player to press the Enter key

Read-Host

As with the statements that generated the welcome screen, the statements that display the

game’s instructions clear the screen, write text output, and then pause the script’s execution

until the player presses the Enter key.

Windows PowerShell Programming for the Absolute Beginner

Controlling Gameplay
The programming logic that controls the core activities of the game is outlined next and

should be appended to the end of the script file.

#Continue gameplay until the player decides to stop

while ($status -ne “Stop”) {

#Ask the player the first question

while ($question -eq “”){

Clear-Host #Clear the Windows command console screen

Write-Host

$question = read-host “ What is your question? “

}

$question = “” #Reset variable to an empty string

#Using the Random object, get a random number between 1 and 4

$answer = $randomNo.Next(1, 5)

#Select an answer based on the time and random number

#If it is the afternoon the fortune teller will be a little cranky

if ($time -gt 12) {

Write-Host

if ($answer -eq 1) { “ Grrrr. The answer is no!” }

if ($answer -eq 2) { “ Grrrr. The answer is never!” }

if ($answer -eq 3) { “ Grrrr. The answer is unclear!” }

if ($answer -eq 4) { “ Grrrr. The answer is yes!” }

}

#If it is morning, the fortune teller will be in a good mood

else {

Write-Host

if ($answer -eq 1) { “ Ah. The answer is yes!” }

if ($answer -eq 2) { “ Ah. The answer is always!” }

91Chapter 3 • Object-Based Scripting with .NET

92

if ($answer -eq 3) { “ Ah. The answer is uncertain!” }

if ($answer -eq 4) { “ Ah. The answer is no!” }

}

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host “ Press Enter to continue.”

#Pause script execution and wait for the player to press the Enter key

Read-Host

#Clear the Windows command console screen

Clear-host

Write-Host

#Prompt the player to continue or quit

$reply = read-host “ Press Enter to ask another question or type Q to quit.”

if ($reply -eq “q”) { $status = “Stop” }

}

Windows PowerShell Programming for the Absolute Beginner

The statements that make up this portion of the script file consist of a number of program-

ming statements that will not be formally covered until later in Chapters 5 and 6. These

statements involve conditional and looping logic. Unfortunately, it is all but impossible to

develop PowerShell scripts of any real complexity without using some conditional or loop-

ing logic and there is only so much information that can be presented at one time. To make

things easier to understand, I have added many comments throughout the script file. How-

ever, because this book has not yet covered these programming constructs, I will not cover

them in great detail now. As a result, you may want to return and review this script once

you have read Chapters 5 and 6.

The overall logic that controls gameplay, allowing the player to ask as many questions as

desired, is controlled by a while loop that executes until the value of a variable named

$status is set equal to “Stop”. Within this loop, another while loop is defined in order to

ensure that the player enters something, as opposed to simply pressing the Enter key when

prompted to ask the fortune teller a question.

Next, a random number is generated in the range of 1 to 4. Then a variable named $time is

checked to see if its value is greater than 12. If it is, the fortune teller is said to be tired and

cranky, thus resulting in the display of 1 of 4 less friendly answers (based on the game’s ran-

domly generated number). However, if it is still morning, a more positive set of answers is

used when retrieving the fortune teller’s answer.

Next, the selected answer is displayed and the player is prompted to either press Enter to ask

another question or to type Q to signal the script that it is time to stop executing. If the

player enters Q, the value of the $status variable is set equal to “Stop”, thus halting the

while loop that controls the overall execution of the script.

Displaying the Closing Screen
Once gameplay has been finished, the player should be invited to return and ask the fortune

teller more questions. This is accomplished by adding the following statements to the end

of the script file.

#Clear the Windows command console screen

Clear-Host

#Provide the player with instructions

Write-Host

Write-Host “ Very well then. Please return again to get all your questions”

Write-Host “ answered.”

Write-Host

93Chapter 3 • Object-Based Scripting with .NET

94

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host “ Press Enter to continue.”

#Pause script execution and wait for the player to press the Enter key

Read-Host

#Clear the Windows command console screen

Clear-Host

The player dismisses this invitation to return and play again by pressing the Enter key, after

which the screen is cleared and the script file stops executing.

Okay, that’s it. Assuming that you have not made any typos when keying in this code for the

PowerShell Fortune Teller game, everything should work as advertised.

Summary
In this chapter you learned about the .NET Framework class library and common language

runtime. You learned how Windows PowerShell cmdlets allow you to access and interact

with resources exposed by the .NET Framework. You also learned how to use a number of

new cmdlets, including the Get-Help cmdlet, which you can use to get additional information

on any cmdlet or PowerShell topic. You also learned how to find out about object properties

Windows PowerShell Programming for the Absolute Beginner

and methods that are not displayed by default when executing cmdlets, but that are

nonetheless available behind the scenes. You learned more about working with aliases,

including how to create your own custom aliases. This chapter also explained how Windows

PowerShell uses object pipelines to pass structured data between cmdlets. Lastly, you learned

how to create the PowerShell Fortune Teller game.

Now, before you move on to Chapter 4, I recommend that you take a few extra minutes to

improve and enhance the PowerShell Fortune Teller game by implementing the following

challenges.

95Chapter 3 • Object-Based Scripting with .NET

C H A L L E N G E S

1. Consider making the game less predictable by expanding the range of answers
available to the game. You might even add a response in which the fortune teller
takes offense to a question and refuses to answer.

2. Consider further altering the fortune teller’s mood by making her even more
cranky as the day turns into night.

This page intentionally left blank

Part

Chapter 4: Working with Variables,
Arrays, and Hashes

Chapter 5: Implementing
Conditional Logic

Chapter 6: Using Loops to Process
Data

Chapter 7: Organizing Scripts
Using Functions

Learning How to Write
PowerShell Scripts

II

This page intentionally left blank

Working with
Variables, Arrays,

and Hashes

4
C H A P T E RC H A P T E R

T
his is the first of four chapters designed to teach the fundamentals of the

Windows PowerShell scripting language. In this chapter you will learn

how to store, retrieve, and modify data. You will learn how to store indi-

vidual pieces as well as collections of data. This chapter will also cover a number

of other PowerShell language topics, including the use of keywords, escape char-

acters, and string-manipulation techniques. You will also learn how to work with

a number of PowerShell operators. On top of all this, you will get the opportunity

to create your next Windows PowerShell computer game, the Seinfeld Trivia Quiz.

Specifically, you will learn how to

• Create and store individual pieces of data in variables

• Store and access collections of data in arrays and hashes

• Access Windows PowerShell special variables

• Execute the –Replace and Range operators

• Concatenate strings

• Format and control the display of text using escape characters

Project Preview: The Seinfeld Trivia Quiz
This chapter’s game project is the Seinfeld Trivia Quiz, which tests the player’s knowledge

of the popular Seinfeld TV series. The game consists of five multiple-choice questions. When

first started, the game’s welcome screen appears, as shown in Figure 4.1.

After the player presses Enter to dismiss the welcome screen, instructions are displayed that

explain the makeup of the quiz and the grading scale, as demonstrated in Figure 4.2.

Next, the game displays its questions, one at a time, as demonstrated in Figure 4.3.

Once the player has finished taking the quiz and presses Enter to submit her last answer,

the screen shown in Figure 4.4 appears, letting the player know that the game is about to

grade the quiz.

100 Windows PowerShell Programming for the Absolute Beginner

Figure 4.1

The welcome
screen for the
Seinfeld Trivia

Quiz.

Figure 4.2

The player is
awarded a ranking

based on the
number of
correctly
answered
questions.

After grading the quiz, the game informs the player how many questions were correctly

answered and assigns a ranking based on that value, as demonstrated in Figure 4.5.

101Chapter 4 • Working with Variables, Arrays, and Hashes

Figure 4.3

Each question on
the quiz presents

the player with
four possible
answers from

which to choose.

Figure 4.4

The game
announces that it

is now ready to
analyze the

player’s quiz
results.

Figure 4.5

The player
correctly

answered four
quiz questions.

102

The last screen displayed by the Seinfeld Trivia Quiz, shown in Figure 4.6, thanks the player

for taking the time to complete the quiz.

Windows PowerShell Language Features
Although the primary focus of this chapter is on the storage and retrieval of data during

script execution, there are a few additional topics that need to be covered to help round out

your understanding of PowerShell scripting basics. These topics include:

• Reserved words

• Escape characters

• String manipulation

Windows PowerShell Reserved Words
Like any programming language, Windows PowerShell has a collection of reserved words

(also referred to as keywords) that have a special meaning to the language and thus are not

available for use as variable, array, associative array, and function names.

A reserved word is a keyword that Windows PowerShell has predefined as having a special

purpose. An example of a PowerShell reserved word is if, which is used to set up conditional

tests in order to evaluate when a condition is true or false and then control the logical exe-

cution of one or more script statements based on that result. As a reserved word, you must

use the if keyword according to the strict syntactical rules defined by Windows PowerShell.

Therefore, you cannot create a variable or array or any other identifier named if in your

PowerShell scripts. Table 4.1 provides a listing of PowerShell reserved words.

Windows PowerShell Programming for the Absolute Beginner

Figure 4.6

The game ends by
thanking the

player.

Escape Characters
As you write more and more PowerShell scripts, you are going to come across situations in

which you will want to exercise detailed control over how text is displayed in the Windows

command console. As you have seen in previous script game examples, one way to do so is

to use an extra instance of the Write-Host cmdlet and embed blank spaces inside strings, as

demonstrated by the following.

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host “ W E L C O M E T O T H E W I N D O W S”

Write-Host

Write-Host

Write-Host

Write-Host “ P O W E R S H E L L F O R T U N E T E L L E R”

Write-Host

Write-Host

Write-Host

Write-Host “ By Jerry Lee Ford, Jr.”

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

103Chapter 4 • Working with Variables, Arrays, and Hashes

Keyword Keyword Keyword Keyword

break elseif if until
continue filter in where
do foreach return while
else function switch

TA B L E 4 .1 W I N D O W S P O W E R S H E L L R E S E R V E D W O R D S

104

Write-Host

Write-Host

Write-Host “ Press Enter to continue.”

This example required 24 lines of code. While certainly intuitive and easy to understand,

using the Write-Host cmdlet in this manner consumes a lot of space and bloats your Power-

Shell script code. An alternative way to exercise detailed control over your text string output

is to take advantage of PowerShell’s escape characters.

An escape character is a character that has special meaning to Windows PowerShell. Escape

characters are identified by the ` character (typically located just over the Tab key on most

keyboards). Using escape characters, you can insert tabs and newline feeds at any point

within a text string. For example, you can insert `n at any point within a string to force an

immediate newline operation, thus breaking the display of a string into two lines. Likewise,

you can insert a `t within a text string to insert a logical tab. Using just these two escape

characters, you could rework the previous example as demonstrated here.

Write-Host “`n`n`n`n`t`tW E L C O M E T O T H E W I N D O W S”

Write-Host “`n`n`n`t P O W E R S H E L L F O R T U N E T E L L E R”

Write-Host “`n`n`n`t`t`t By Jerry Lee Ford, Jr.”

Write-Host “`n`n`n`n`n`n`n`n`n`n Press Enter to continue.”

Believe it or not, this example provides for the exact same output in just four statements

that the previous example produced in 24 statements. Windows PowerShell supports a num-

ber of different escape characters, as outlined in Table 4.2.

To learn more about Windows PowerShell’s escape characters, execute the fol-
lowing statement at the Windows PowerShell command prompt:

Get-Help about_escape_character

When added to the end of a statement, the ` character instructs Windows
PowerShell to continue the statement onto the next line, as demonstrated
here:

Write-Host “Once upon a time there was a little girl that lived in a

small” `

“house on the edge of the forest.”

When displayed, the output produced by this statement will display just as if
the statement had been written on a single line.

TRICK

HINT

Windows PowerShell Programming for the Absolute Beginner

String Manipulation
Windows PowerShell provides a number of different string-manipulation techniques that

you will find helpful when developing Windows PowerShell scripts. These techniques

include string concatenation, character repetition, and substring replacement.

Concatenation
Windows PowerShell allows you to use the += operator to concatenate or join together two

strings, as demonstrated by the following.

$x = “Once upon “

$y = “a time...”

$z = $x += $y

$z

In this example, two strings are assigned to variables named $x and $y. The third statement

uses the += operator to concatenate the values assigned to these two variables in order to

create a new string, which is assigned to a variable named $z. When executed, this example

generates the following output.

Once upon a time...

105Chapter 4 • Working with Variables, Arrays, and Hashes

Escape Character Description

`’ Single quote

`” Double quote

`0 Null

`a Alert

`b Backspace

`f Form feed

`n Newline

`r Carriage return

`t Horizontal tab

`v Vertical tab

TA B L E 4 . 2 W I N D O W S P O W E R S H E L L E S C A P E C H A R A C T E R S

106

Windows PowerShell also allows you to concatenate two strings together using just the

+ operator, as demonstrated here.

$x = “Once upon “

$y = “a time...”

$z = $x + $y

$z

When executed, this example produces output that is identical to the previous example.

Repeating Character Strings
Another string-manipulation technique that you may find helpful is the ability to repeat the

display of strings using the * operator, as demonstrated here.

$x = “Ha “ * 3

$x

In this example, the string “Ha “ is repeated three times, resulting in the output shown here.

Ha Ha Ha

This programming technique can be useful in situations where you need to generate reports

in which you want to format report headings that use repeated characters to help visually

separate report contents, as demonstrated here.

$x = “-” * 50

Write-Host $x

Get-Date

Write-Host

Write-Host “Report Title”

Write-Host

Write-Host $x

Here, a variable named $x is assigned a string made up of 50 – characters. This variable is

displayed twice in order to provide a visual border within which a report heading, made up

of a date and title, is displayed, as shown here.

—————————————————————————

Thursday, October 05, 2006 11:39:02 PM

Report Title

—————————————————————————

Windows PowerShell Programming for the Absolute Beginner

107Chapter 4 • Working with Variables, Arrays, and Hashes

Replacing Parts of a String
The replace operator (-replace) lets you replace all or a portion of a string. To use the replace

operator, you specify the string to be manipulated followed by the replace operator and then

two operator arguments. The first argument is the part of the script that you want to replace

and the second argument is the replacement string. To see the replace operator in action,

take a look at the following example, which takes a string and replaces the word boy with

the word girl.

$x = “Once upon a time there was a little boy.”

$y = $x -replace “boy”, “girl”

$y

When executed, this example displays the following output.

Once upon a time there was a little girl.

Note that as the previous example demonstrates, you can display the contents
of a variable by simply referencing its name in your script.

Storing and Retrieving Data
In any programming language, programmers need a mechanism for storing and retrieving

data. You can programmatically access numerous types of data by executing cmdlets. You can

then manipulate the data that is generated using other cmdlets as the data passes through

the object pipeline. However, there are limits to this approach. In many circumstances, you

will find that you need to be able to store data for later analysis, manipulation, and display.

Windows PowerShell’s programming language provides you with several different ways of

storing data, as listed here.

• Variables. Store individual pieces of data.

• Arrays. Store data as an index list.

• Hashes. Store data in key-value pairs.

Variables
Variables provide you with a means of storing data within your Windows PowerShell scripts.

Using variables, you can store just about anything you want, including numbers, strings,

and objects. If you store object data returned as output by a cmdlet, PowerShell is able to

retain an awareness of the object types and therefore the properties and methods associated

with the object.

TRICK

108

Naming Your Variables
Windows PowerShell variable names are not case sensitive, meaning that if you define a

variable named $username, you can later refer to it as $USERNAME and PowerShell will under-

stand what you mean. Windows PowerShell variable names can include letters, numbers,

and the underscore character (_). Windows PowerShell variable names must begin with the

$ character. Examples of valid variable names include:

• $userName

• $total

• $1stName

• $game_winner

Examples of invalid variable names include:

• $user Name

• $total!

• $#!,).@%&

The first example is invalid because it includes a blank space. The second example is invalid

because it includes the ! character. Lastly, the third example is invalid because it contains a

whole slew of unsupported characters. If you forget and include an invalid variable in a Power-

Shell script, your script will most likely terminate with an error. For example, the following

variable assignment statement is invalid because it contains a number of invalid characters.

$#!,).@%& = “Winner”

If you were to try and use this variable name in a PowerShell script, the script will terminate

and display the following error.

Invalid variable reference. ‘$’ was not followed by a valid variable name character.

Consider using ${} to delimit the name.

At C:\MyScripts\xxx.ps1:3 char:1

+ $ <<<< #!,).@%& = “Winner”

If you find yourself with a strong desire to include special characters within your
variable’s name, you may do so by enclosing the variable name inside matching
{} characters, as demonstrated here.

${bang#!} = “Winner”

By enclosing variable names within {} brackets, you can include an assortment
of different characters, such as #, $, %, and *, as well as periods, commas, and
even blank spaces.

TRICK

Windows PowerShell Programming for the Absolute Beginner

Defining and Initializing Variables
Windows PowerShell supports a range of data types that corresponds to data types supported

by the .NET Framework. For example, Windows PowerShell supports integers and floating-

point numbers, which you can assign to variables, as demonstrated by the following.

$x = 5

$y = 5.5

$z = “Winner”

Windows PowerShell automatically recognizes the first assignment shown above as an integer,

the second assignment as a floating-point number, and the third assignment as a string.

I strongly recommend that you assign an initial default value to any variable that
you declare within your Windows PowerShell scripts. If a script statement
attempts to access a variable that has not been assigned a value, an error is not
generated. Instead, your script will keep running and you’ll end up with unpre-
dictable results.

Variable Interpolation
Up to this point in the book, all of the strings that you have seen have been placed inside

matching sets of double quotation marks. However, you are also allowed to define strings

using matching sets of single quotation marks. The difference between the two is that variable

interpolation occurs when a variable is embedded inside a string enclosed within double

quotations marks but does not occur within a string enclosed within single quotation marks.

To see how this works, consider the following example.

$x = “red”

Write-Host “The little boy held on tightly to his $x balloon”

When executed, the following output is displayed.

The little boy held on tightly to his red balloon

As you can see, Windows PowerShell automatically substituted the value of $x when gener-

ating text output. However, if you were to rework this example by placing the string inside

single quotation marks, as shown next, variable interpolation does not occur.

$x = “red”

Write-Host ‘The little boy held on tightly to his $x balloon’

If you run this example, the following output will be displayed.

The little boy held on tightly to his $x balloon

TRAP

109Chapter 4 • Working with Variables, Arrays, and Hashes

110 Windows PowerShell Programming for the Absolute Beginner

In most cases, using double quotes to define strings is all you will need.

Assigning Variable Values Using Expressions
You can also assign variable values using expressions. Here, the value of 1 + 4 (i.e., 5) is

assigned to a variable named $x.

$x = 1 + 4 # $x equals 5

In addition to the + operator, Windows PowerShell supports a wide range of arithmetic oper-

ators, as shown in Table 4.3.

Precedence
In Windows PowerShell scripting, like in any other programming language, mathematical

operations are executed according to a specific order of precedence, which occurs on a left-

to-right basis. Specifically, the - unary operator, which negates a number, is evaluated first.

Next, PowerShell performs multiplication and division and then remaindering. Finally,

addition and subtraction are performed. For example, consider the following expression.

An expression is a statement that is evaluated and produces a result.

$x = 5 * 4 / 2 * 5 - 5 * 5

When executed by PowerShell, the value assigned to $x is 25, which is calculated as follows:

1. Multiplication and division occurs first, so 5 * 4 = 20, which is then divided by 2,

resulting in a value of 10. This value is then multiplied by 5 to get a new value of 50.

HINT

Operator Description

+ Adds two numbers together

- Subtracts one number from another

* Multiplies two numbers together

/ Divides one number by another

% Retrieves the remainder of a division operation (modulus)

TA B L E 4 . 3 W I N D O W S P O W E R S H E L L A R I T H M E T I C O P E R A T O R S

2. Since multiplication and division occur before addition and subtraction, the subtrac-

tion operation, which appears next in the equation, is skipped and the multiplication

operation at the end of the statement is executed, resulting in a value of 25.

3. Finally, 25 is subtracted from 50 to produce a value of 25.

An expression like this can be difficult to read. To help clarify things, you can use paren-

theses to visually group different parts of the expression.

$x = (5 * 4 / 2 * 5) – (5 * 5)

In addition to helping to visually organize the expression, you can also use parentheses to

alter the order in which the contents of the expression are executed by overriding the order

of precedence. Take, for example, the following statement:

$x = 5 * 4 / (2 * 5 – 5) * 5

As you can see, this statement is almost identical to the previous example, except that

parentheses have altered the order in which the expression is evaluated. As a result, the

expression evaluates to a value of 20, which is computed as follows:

1. The multiplication of 2 * 5 occurs first, resulting in a value of 10, from which 5 is

then subtracted.

2. Next, starting at the beginning of the expression, 5 is multiplied by 4, resulting in a

value of 20.

3. 20 is then divided by the value computed in the first step (i.e., 5), resulting in a value of 4.

The value of 4 is then multiplied by the last number in the expression, resulting in a

value of 20.

Two arithmetic operators (+ and *) are overloaded, allowing them to work for
strings as well as numbers. Thus, as you have already seen, you can use the +
operator to concatenate two strings together. You can also use the * operator to
repeat a string a specified number of times as was demonstrated earlier in this
chapter.

PowerShell Assignment Operators
Up to this point in the book, you have seen the equal (=) operator used to make all assign-

ments. However, Windows PowerShell supports a host of different assignment operators, as

shown in Table 4.4.

TRICK

111Chapter 4 • Working with Variables, Arrays, and Hashes

112 Windows PowerShell Programming for the Absolute Beginner

Operator Description

= Assigns a value to a variable

+= Adds a value to a variable

-= Subtracts a value from a variable

*= Multiplies a variable value

/= Divides a variable value

%= Assigns the remainder of a division

TA B L E 4 . 4 W I N D O W S P O W E R S H E L L A S S I G N M E N T O P E R A T O R S

As an example of how to work with these operators, consider the following example.

$x = 5

$x +=5

Here, the value of $x is equal to 5 and then incremented by 5, resulting in a final value of 10.

In addition to the assignment operators shown in Table 4.4, Windows PowerShell also sup-

ports two additional operators that you can use to automatically increment and decrement

the value of a variable by 1.

• ++ Automatically increments a value by 1.

• — Automatically decrements a value by 1.

As an example of how these two operators work, consider the following statements.

$x = 5

$y = $x++

In the previous example, $x++ is functionally equivalent to $x = $x + 1.

Here, a variable named $x is set equal to 5. Next, a variable named $y is assigned the value

assigned to $x, after $x is incremented by 1. Thus $y ends up assigned a value of 6.

HINT

113Chapter 4 • Working with Variables, Arrays, and Hashes

Special Variables
Windows PowerShell provides you with access to a number of variables that are always avail-

able to your PowerShell scripts. These variables provide access to commonly used informa-

tion. By making references these special variables, you save yourself the effort of having to

create and maintain your own version of these variables. Table 4.5. lists a number of com-

monly used special variables.

You have seen the $_ special variable used a couple times already in this book. As another

example of how to use Windows PowerShell’s special variables, consider the following example.

Set-Location $home

$x = Get-ChildItem

$x

When executed, this example changes the current working directory to the home directory

of the person who runs the script and then assigns a list of all of contents of that folder to

a variable named $x.

To view a listing of all Windows PowerShell’s special variables and see their def-
initions, use the Get-Help cmdlet and pass it an argument of about_automatic
_variables, as shown here.

Get-Help about_automatic_variables

HINT

Special Character Description

$_ Represents the current pipeline object when used in script blocks such
as the Foreach-Object and the Where-Object blocks

$Error Provides access to information about recent errors

$HOME Represents the home directory of the current user

$PSHome Indicates the name of the folder where Windows PowerShell is installed

$null Represents a null object

TA B L E 4 . 5 W I N D O W S P O W E R S H E L L S P E C I A L V A R I A B L E S

114

Variable Scope
Within Windows PowerShell scripts, variable access depends on the location at which a vari-

able is defined. Within Windows PowerShell, access is governed by scope. PowerShell sup-

ports four different scopes, each of which can be referenced by one of the following labels.

• Local scope. Refers to the current scope, which can be global, private, or script.

• Global scope. A scope that is established whenever a new PowerShell session is

started.

• Private scope. A scope that is not visible or accessible to other scopes.

• Script scope. A scope that is established whenever a script is executed and which

ends when the script stops executing.

Whenever you start up a new Windows PowerShell session, you establish a global scope. Any

variable created from the command prompt during the current session is global in scope.

Global variables can be accessed from within the current scope (e.g., from the command

line as well as from child scopes). When you execute a PowerShell script, a new script scope

is created. This scope is a child scope to the global scope.

Variables defined within your PowerShell scripts (outside of any functions) are local vari-

ables and can be accessed from anywhere within the script. Within the PowerShell script,

you can define functions in order to improve the overall organization of the script and to

further refine the scope. Variables defined within a function are local to the function and

the function’s scope is a child scope of the script’s script scope.

A function is a collection of statements that can be called upon to execute as a
unit. Functions are covered in Chapter 7, “Organizing Scripts Using Functions.”

By default, variables created in a child scope can be seen and accessed in a parent scope,

unless the variables are defined as private, in which case the variables can only be accessed

from within their own scope.

So far all of the variables that you have worked with in this book’s PowerShell game scripts

have been local in scope and as such have been accessible throughout the entire script. How-

ever, as you will see in Chapter 7, you can define variables within functions and mark them

as private, limiting access to just within the function itself.

Arrays
As has been already stated, variables can be used to store numbers, strings, and objects

of any type. Variables can also be used to store arrays. An array is an indexed list of values.

HINT

Windows PowerShell Programming for the Absolute Beginner

Each element stored in an array is assigned a unique numeric index number, which can

later be used to retrieve its value. In Windows PowerShell, array indexes start at zero, so the

first element in an array has an index of 0 and the second element has an index of 1 and so on.

Creating an Array
You can create a new empty array by assigning an empty array (represented as @()) to a vari-

able, as demonstrated here.

$names = @()

You can later add new elements to the array by assigning each element using the = operator.

$names[0] = “Alexander”

$names[1] = “William”

$names[2] = “Molly”

Once populated, you can refer to any array element by referencing its index number, as

demonstrated here.

Write-Host $names[1] “is a great kid.”

In this example, $x is assigned a value of Molly. Because arrays are indexed, you can process

all the elements stored in an array using a loop. You will find examples of how to do this in

Chapter 6, “Using Loops to Process Data.”

In addition to referencing an array element by its index number, Windows
PowerShell also allows you to use negative numbers to reference the elements
stored at the end of an array. An index value of –1would refer to the last elements
stored in the array; a value of –2 would represent the second to last element,
and so on.

Alternatively, you can populate an array with data at creation time, as demonstrated by the

following.

$numbers = @(1, 2, 3, 4, 5)

Write-Host $numbers

Here, an array named $numbers has been defined and populated with five numeric values.

Note that the array is identified by the @ character and the elements assigned to the array

are provided as a comma-separated list enclosed inside matching parentheses. When exe-

cuted, this example produces the following output.

1 2 3 4 5

TRICK

115Chapter 4 • Working with Variables, Arrays, and Hashes

116 Windows PowerShell Programming for the Absolute Beginner

If you want, you can use the range operator (..) to populate an array with a range
of values. For example, the following statement can be used to create an array
named $numbers and assign it 1, 2, 3, 4, 5 as its initial elements.

$numbers = @(1..5)

Modifying Element Values
You can modify the value of any element in an array by specifying its index number, as

demonstrated by the following.

$numbers = @(1, 2, 3, 4, 5)

$numbers[2] = 9

$numbers

When executed, this example produces the following output

1

2

9

4

5

As you can see, the value stored in the array’s third element has been changed to 9. (Remem-

ber that array indexes begin at 0 and not 1.)

Keeping Track of Array Size
Arrays have a Count property that you can use to determine the number of elements in an

array, as demonstrated here.

$names = @(“Alexander”, “William”, “Molly”)

$total = $names.Count

$total

When executed, $total is assigned a value of 3.

Arrays also have a length property that you can use to retrieve the number
of elements in an array, as demonstrated next.

$names = @(“Alexander”, “William”, “Molly”)

$total = $names.Length

$total

HINT

TRICK

Combining Arrays
Windows PowerShell also allows you to combine two or more arrays to create a new larger

array using the + operator, as demonstrated by the following.

$lowNumbers = @(1, 2, 3)

$highNumbers= @(4, 5, 6)

$numbers = $lowNumbers + $highNumbers

$numbers

In this example, two arrays, named $lowNumbers and $highNumbers, have been defined. Then

using the + operator, these two arrays are combined to create a new array named $numbers,

whose elements are 1, 2, 3, 4, 5, and 6.

Deleting and Inserting Array Elements
There is no direct way to insert an element into a particular location in an array. However,

using the range operator and the + operator, you can work around this shortcoming, as

demonstrated here.

$numbers = @(1, 2, 3, 4, 5, 6, 7)

$numbers = $numbers[0..2 + 4..6]

$numbers

In this example, the first statement defines an array named $numbers and assigns it a range

of values. The second statement reassigns the contents of the $numbers array by using the

range operator and the + operator to generate a new list of elements consisting of the first

three and last three elements in the original array. When executed, this example produces

the following output.

1

2

3

5

6

7

There is no direct way to insert an element into the beginning or middle of an array.

However, by adapting the aforementioned technique, you can insert a number at any given

location within an array, as demonstrated here.

117Chapter 4 • Working with Variables, Arrays, and Hashes

118

$numbers = @(1, 2, 3, 4, 5, 6, 7)

$numbers = $numbers[0..3] + 99 + $numbers[4..6]

$numbers

In this example, the number 99 is inserted into the middle of the array.

Associative Arrays
One shortcoming of arrays is that as they grow bigger, it becomes difficult to keep track of

where individual array elements are stored. As a result, to find a given value, you usually

have to set up a loop to search the array, examining every element in order to find the one

you want. An associative array, sometimes referred to as a hash or dictionary, provides a more

efficient and faster alternative, allowing you to store data in key-value pairs.

Creating an Associative Array
One way to create an associative array is to define it as an empty associative array, as demon-

strated next.

$ids = @{}

As you can see, the variable used to store the hash is just a regular variable, and the empty

hash table is represented by @{}.

Once defined, you can add as many key-value pairs to it as necessary, as demonstrated by the

following.

$ids[12345] = “William”

$ids[23456] = “Alexander”

$ids[34567] = “Molly”

$ids[22334] = “Mary”

$ids[55555] = “Jerry”

Each of these statements adds a new entry into the associative array. The value specified

inside the brackets is the key and the value specified to the right side of the equals sign is

the value.

Accessing Data Stored in Associative Arrays
Once created and populated with data, you can retrieve a value from the associative array,

as demonstrated here.

$x= $ids[34567]

Windows PowerShell Programming for the Absolute Beginner

Here, a value of Molly is retrieved from the associative array and assigned to a variable

named $x.

Associative arrays can be used to store any amount of data. Associative array keys and values

can be of any length. Associative array elements are stored as values and must be enclosed

inside quotation marks if they contain blank spaces. Stored values are retrieved by refer-

encing their associated key. Associated arrays can store any type of data. Data retrieval from

associative arrays is relatively fast and does not increase as more values are added.

Populating Associative Arrays at Creation Time
Associative arrays can also be populated at creation time, as demonstrated here.

$nicknames = @{Alexander = “X-Man”; William = “William-D”; Molly = “Might-One”}

$x = $nicknames[“Alexander”]

As you can see, three separate key-value pairs have been defined. Key-value pairs are sepa-

rated by semicolons and enclosed inside matching brackets and preceded by the @ character.

When executed, $x is assigned a value of Alexander.

If you want, you can display the contents of an associative array from within your Power-

Shell scripts, as demonstrated by the following.

$nicknames = @{Alexander = “X-Man”; William = “William-D”; Molly = “Might-One”}

$nicknames

When executed, this example will produce the following output.

Name Value

—— ——-

Alexander X-Man

Molly Might-One

William William-D

Like arrays, you can combine the contents of associative arrays using the
+ operator, as demonstrated here.

$kidNames = @{Alexander = “X-Man”; William = “William-D”; Molly =

“Might-One”}

$parentNames = @{Jerry = “Daddy”; Mary = “Mommy”}

$familyNames = $kidNames + $parentNames

$familyNames

HINT

119Chapter 4 • Working with Variables, Arrays, and Hashes

120

When executed, this example produces the following output.

Name Value

—— ——-

William William-D

Alexander X-Man

Jerry Daddy

Molly Might-One

Mary Mommy

Deleting a Key-Value Pair
Associative arrays provide you with access to methods that allow you to manipulate their

contents. For example, you can remove an entry from an associative array using the Remove

method, as demonstrated here.

$nicknames = @{Alexander = “X-Man”; William = “William-D”; Molly = “Might-One”}

$nicknames.Remove(“Alexander”)

$nicknames

When executed, this example will produce the following output.

Name Value

—— ——-

Molly Might-One

William William-D

Removing Associative Array Contents
Using the Clear method, you can remove the contents of an associative array, as demon-

strated by the following.

$nicknames.Clear()

To learn more about hashes, use the Get-Help cmdlet to look up
about_Associative_Array.

HINT

Windows PowerShell Programming for the Absolute Beginner

Back to the Seinfeld Trivia Quiz
Okay, let’s turn our attention back to the development of this chapter’s main game project,

the Seinfeld Trivia Quiz. The development of this game will demonstrate how to create an

interactive online quiz that presents the player with a series of questions that are then ana-

lyzed and graded. The primary point of focus for you as you create this game should be on

the use of variables to store and analyze data collected from the player. In addition, you

should take note of the use of Windows PowerShell escape characters in the generation of

display output.

Designing the Game
The Seinfeld Trivia Quiz will begin by displaying a welcome screen and then displaying

instructions for taking the quiz. Next, it will present a series of five multiple-choice ques-

tions. The game should validate player answers for each question before accepting them and

store each answer for later analysis. Once the player has finished taking the quiz, the

player’s answers should be graded and a ranking should be assigned to the player based on

how well she did.

The overall steps involved in developing the Seinfeld Trivia Quiz are as follows:

1. Create a new script file and add opening comment statements.

2. Define variables used in the script to store player answers and keep track of the

number of correctly answered questions.

3. Display a welcome screen.

4. Display instructions for gameplay and explain the grading scale.

5. Present the player with the first quiz question.

6. Display the rest of the quiz questions.

7. Let the player know when all questions have been answered

8. Analyze the answers provided for each quiz question.

9. Assign a ranking based on the number of correctly answered questions.

10. Thank the player for taking time to take the quiz.

Creating a New Script
The first step is creating a new PowerShell file named SeinfeldTrivia.ps1 and adding the fol-

lowing statements to it.

121Chapter 4 • Working with Variables, Arrays, and Hashes

122

#

Script Name: SeinfeldTrivia.ps1 (The Seinfield Trivia Quiz)

Version: 1.0

Author: Jerry Lee Ford, Jr.

Date: January 1, 2007

Description: This PowerShell script tests the player’s knowledge

of Seinfeld trivia through the administration of

a computer quiz made up of 5 questions.

#

#Clear the Windows command console screen

Clear-Host

As with previous game scripts, this script file has been generated using the Windows Power-

Shell template that was developed back in Chapter 2, “Interacting with the Windows PowerShell

Command Line.” In addition, the script’s first statement has been added, which executes the

Clear-Host cmdlet in order to clear the display area of the Windows command console.

Defining and Initializing Variables
The next step in the creation of the Seinfeld Trivia Quiz is to define variables used throughout

the script and to assign their initial values. This is accomplished by adding the following

statements to the end of the PowerShell script file.

#Define the variables used in this script to store player answers

$question1 = “”

$question2 = “”

$question3 = “”

$question4 = “”

$question5 = “”

#Define a variable to keep track of the number of correctly answered

#quiz questions

$noCorrect = 0

The first set of statements shown above defines five variables that will be used to store

answers provided by the player in response to quiz questions. The last statement defines a

Windows PowerShell Programming for the Absolute Beginner

variable named $noCorrrect, which will be used to keep track of the number of questions

that the player answers correctly.

Displaying the Welcome Screen
The next step in the development of the Seinfeld Trivia Quiz is the display of the game’s wel-

come screen. This is accomplished by appending the following statements to the end of the

script file.

#Display the game’s opening screen

Write-Host “`n`n`n`n`t`t W E L C O M E T O T H E S E I N F E L D”

Write-Host “`n`n`n`t`t`t T R I V I A Q U I Z”

Write-Host “`n`n`n`t`t`t By Jerry Lee Ford, Jr.”

Write-Host “`n`n`n`n`n`n`n`n`n`n Press Enter to continue.”

#Pause script execution and wait for the player to press the Enter key

Read-Host

As you can see, the game’s welcome screen is created using a series of Write-Host cmdlets.

In order to control the string formatting, a series of escape characters has been embedded

within each statement. Specifically, instances of the `n escape character have been added to

generate newline commands, and the `t escape character has been used to insert tab com-

mands. The last statement shown above uses the Read-Host cmdlet to pause script execution

until the player presses the Enter key.

Displaying Instructions
After reading and dismissing the game’s welcome screen, instructions for taking the quiz

and an explanation of its ranking system need to be displayed. This is accomplished by

appending the following statements to the end of the script file.

#Clear the Windows command console screen

Clear-Host

#Provide the player with instructions

Write-Host “`n`n The Seinfeld Trivia Quiz tests your knowledge of Seinfeld`n”

Write-Host “ trivia. The quiz consists of five equally weighted multiple`n”

Write-Host “ choice questions. At the end of the quiz your answers will`n”

Write-Host “ be checked and you will be assigned a skill level, using`n”

Write-Host “ the following scale.`n`n”

Write-Host “ `t Score: 5 correct = Jerry (Expert)”

123Chapter 4 • Working with Variables, Arrays, and Hashes

124

Write-Host “ `t`t 4 correct = Kramer”

Write-Host “ `t`t 3 correct = Elaine”

Write-Host “ `t`t 2 correct = George”

Write-Host “ `t`t 1 correct = Newman”

Write-Host “ `t`t 0 correct = Babo (Clueless)”

Write-Host “`n`n`n`n Press Enter to continue.”

#Pause script execution and wait for the player to press the Enter key

Read-Host

The statements shown above clear the screen and display text output using a series of Write-

Host cmdlets. The script is then paused using the Read-Host cmdlet, forcing the player to

press the Enter key in order to continue the quiz.

Displaying the First Quiz Question
The next step in the creation of the Seinfeld Trivia Quiz is the presentation of the first quiz

question and the collection of the player’s answer. The code statements required to present

the game’s first question are outlined next and should be appended to the end of the script

file.

#Ask the player the first question

while (($question1 -ne “a”) -and ($question1 -ne “b”) `

-and ($question1 -ne “c”) -and ($question1 -ne “d”)) {

Clear-Host #Clear the Windows command console screen

Write-Host

Write-Host “ What is Kramer’s first name?”

Write-Host

Write-Host “ A. Peterman”

Write-Host “ B. Cosmo”

Write-Host “ C. Puddy”

Write-Host “ D. Peck”

Write-Host

$question1 = Read-Host “ Type the letter representing the correct” `

“ answer and press the Enter key”

}

Windows PowerShell Programming for the Absolute Beginner

The overall logic of this portion of the script file is controlled by a while loop. Within the

while loop, the Read-Host cmdlet is used to prompt the player to provide an answer to the

first quiz question. The player’s answer is stored in a variable named $question1. The loop is

set up to execute until the player submits a valid answer to the first quiz question. Valid

answers are a, A, b, B, c, C, d, or D. (Remember, by default Windows PowerShell is not case-

sensitive.) If the player provides a valid answer, the loop stops executing and the script con-

tinues running. However, if the player fails to provide a valid response, the loop repeats

itself, prompting the player to answer the question.

The logic that makes up this portion of the script file consists of a number of
programming statements that are not formally introduced until Chapters 5 and 6.
Since this book has not yet covered these programming constructs, I will not
cover them in detail now. These statements require the implementation of con-
ditional and looping logic. For now, to make things a little easier to understand,
I have added numerous comment statements to document what is occurring
in this portion of the script file. I suggest that you return and review this portion
of the script file once you have read Chapters 5 and 6.

Displaying the Remaining Quiz Questions
The statements that present the next four quiz questions and collect the player’s answers

are presented below and should be appended to the end of the script file.

#Clear the Windows command console screen

Clear-Host

#Ask the player the second question

while (($question2 -ne “a”) -and ($question2 -ne “b”) `

-and ($question2 -ne “c”) -and ($question2 -ne “d”)) {

Clear-Host #Clear the Windows command console screen

Write-Host

Write-Host “ What was George’s favorite pretend career?”

Write-Host

Write-Host “ A. Bra salesman”

Write-Host “ B. Real estate”

Write-Host “ C. City planner”

Write-Host “ D. Architect”

Write-Host

HINT

125Chapter 4 • Working with Variables, Arrays, and Hashes

126

$question2 = Read-Host “ Type the letter representing the correct” `

“answer and press the Enter key”

}

#Clear the Windows command console screen

Clear-Host

#Ask the player the third question

while (($question3 -ne “a”) -and ($question3 -ne “b”) `

-and ($question3 -ne “c”) -and ($question3 -ne “d”)) {

Clear-Host #Clear the Windows command console screen

Write-Host

Write-Host “ For whom did Elaine buy white socks?”

Write-Host

Write-Host “ A. Mr. Lippman”

Write-Host “ B. Mr. Peterman”

Write-Host “ C. Mr. Pitt”

Write-Host “ D. Puddy”

Write-Host

$question3 = Read-Host “ Type the letter representing the correct” `

“answer and press the Enter key”

}

#Clear the Windows command console screen

Clear-Host

#Ask the player the fourth question

while (($question4 -ne “a”) -and ($question4 -ne “b”) `

-and ($question4 -ne “c”) -and ($question4 -ne “d”)) {

Clear-Host #Clear the Windows command console screen

Windows PowerShell Programming for the Absolute Beginner

Write-Host

Write-Host “ What is Kramer scared of?”

Write-Host

Write-Host “ A. Swimming”

Write-Host “ B. Fried Chicken”

Write-Host “ C. Clowns”

Write-Host “ D. The dentist”

Write-Host

$question4 = Read-Host “ Type the letter representing the correct” `

“answer and press the Enter key”

}

#Clear the Windows command console screen

Clear-Host

#Ask the player the fifth question

while (($question5 -ne “a”) -and ($question5 -ne “b”) `

-and ($question5 -ne “c”) -and ($question5 -ne “d”)) {

Clear-Host #Clear the Windows command console screen

Write-Host

Write-Host “ Where do Jerry’s parents live?”

Write-Host

Write-Host “ A. Kansas”

Write-Host “ B. New York”

Write-Host “ C. California”

Write-Host “ D. Florida”

Write-Host

$question5 = Read-Host “ Type the letter representing the correct” `

“answer and press the Enter key”

}

As you can see, the presentation of the remaining quiz questions follows the same pattern

as the first question, except for variations in the text strings that are displayed.

127Chapter 4 • Working with Variables, Arrays, and Hashes

128

Let the Player Know the Quiz Is Complete
Once the player has finished answering each of the quiz’s five questions, the script should

pause to let the player know that the quiz will now be graded. This is accomplished by

adding the following statements to the end of the script file.

#Clear the Windows command console screen

Clear-Host

Write-Host

Write-Host “ OK, now press the Enter key to see how you did.”

#Pause script execution and wait for the player to press the Enter key

Read-Host

As you can see, these statements use the Clear-Host cmdlet to clear the Windows command

console screen, the Write-Host cmdlet to display text, and the Read-Host cmdlet to pause

script execution until the player presses the Enter key.

Analyzing Player Answers
At this point, it is time to analyze each answer provided by the player to determine if it is

right or wrong. This is accomplished by appending the following statements to the end of

the script file.

#Clear the Windows command console screen

Clear-Host

#Grade the answers for each quiz question

if ($question1 -eq “b”) { $noCorrect++ } #The answer to question 1 is “B”

if ($question2 -eq “d”) { $noCorrect++ } #The answer to question 2 is “D”

if ($question3 -eq “c”) { $noCorrect++ } #The answer to question 3 is “C”

if ($question4 -eq “c”) { $noCorrect++ } #The answer to question 4 is “C”

if ($question5 -eq “d”) { $noCorrect++ } #The answer to question 5 is “D”

Each of the five if statements shown above is designed to address one of the quiz’s ques-

tions. The first statement examines the player’s first answer, which is stored in $question1,

to see if it is equal to b. If it is, the value of the variable named $noCorrect is incremented by

1 using the ++ operator. The next four if statements are set up to analyze the player’s

answers to the remaining quiz questions.

Windows PowerShell Programming for the Absolute Beginner

Assigning a Ranking
Once the number of correctly answered quiz questions has been tabulated, the script needs

to assign the player a ranking based on the resulting value. Specifically, the ranking assign-

ment is made by comparing the value of $noCorrect to the values outlined in Table 4.6.

#Assign a ranking based on quiz score

if ($noCorrect -eq 0) {

Write-Host

Write-Host “ You did not get any questions correct.”

Write-Host

Write-Host “ Your knowledge of Seinfeld trivia is no better than Babo’s.”

}

if ($noCorrect -eq 1) {

Write-Host

Write-Host “ You got 1 question correct.”

Write-Host

Write-Host “ Your knowledge of Seinfeld trivia is no better than” `

“Newman’s.”

}

if ($noCorrect -eq 2) {

Write-Host

Write-Host “ You got 2 questions correct.”

129Chapter 4 • Working with Variables, Arrays, and Hashes

Assignment Description

Babo Zero correct answers

Newman One correct answer

George Two correct answers

Elaine Three correct answers

Kramer Four correct answers

Jerry Five correct answers

TA B L E 4 .6 R A N K A S S I G N M E N T S F O R T H E S E I N F E L D T R I V I A Q U I Z

130

Write-Host

Write-Host “ Your knowledge of Seinfeld trivia is approximately that” `

“of George’s.”

}

if ($noCorrect -eq 3) {

Write-Host

Write-Host “ You got 3 questions correct.”

Write-Host

Write-Host “ Your knowledge of Seinfeld trivia is approximately that” `

“of Elaine’s.”

}

if ($noCorrect -eq 4) {

Write-Host

Write-Host “ You got 4 questions correct.”

Write-Host

Write-Host “ Your knowledge of Seinfeld trivia is about as good as” `

“Kramer’s.”

}

if ($noCorrect -eq 5) {

Write-Host

Write-Host “ You got 5 questions correct.”

Write-Host

Write-Host “ Your knowledge of Seinfeld trivia is every bit as good” `

“as Jerry’s.”

}

#Pause script execution and wait for the player to press the Enter key

Read-Host

The value of $noCorrect can only be equal to one of the values outlined in the five if state-

ments mentioned previously. The matching if statement displays a series of text strings

showing how many questions the player correctly answered and the ranking assigned as a

result. The code statements embedded within the four non-matching if statements are

ignored and never executed.

Windows PowerShell Programming for the Absolute Beginner

Finishing the Quiz
Once gameplay has been finished, the Seinfeld Trivia Quiz ends by thanking the player for

taking the time to complete the quiz. This is accomplished by adding the following state-

ments to the end of the script file.

#Clear the Windows command console screen

Clear-Host

#Provide the player with instructions

Write-Host

Write-Host “ Thanks for taking the Seinfeld Trivia Quiz!”

#Pause script execution and wait for the player to press the Enter key

Read-Host

#Clear the Windows command console screen

Clear-Host

The player dismisses this screen by pressing the Enter key. The Windows command console

screen is then cleared and the script file stops executing.

The Final Result
Okay, this should be everything you need to finish the development of the Seinfeld Trivia

Quiz. Assuming that you have not made any typos when keying in the script file, everything

should work as expected. In the event that an error does occur, then you have made a typo

or two somewhere in the script file. In order to track down your errors, begin by analyzing

the error message that was displayed when you tried to run your script. Hopefully, there will

be enough information provided to help you track down the error. It may be that you made

a typo or left out a statement somewhere along the way when keying in the script’s state-

ments. If your script file contains more than one error, you may have to go through several

iterations before you eliminate all your errors.

Summary
This chapter showed you how to store, retrieve, and modify data. You learned how to work

with variables, arrays, and hashes. You also learned how to work with special built-in Windows

PowerShell variables. You learned how to work with the –Replace operator to perform string

131Chapter 4 • Working with Variables, Arrays, and Hashes

132 Windows PowerShell Programming for the Absolute Beginner

substitution operations and the Range operator to generate a list of values. In addition, you

learned how to concatenate strings, variables, and hashes. You also learned how to use Windows

PowerShell escape characters to streamline and control the formatting of text output. Lastly,

you learned how to create a new Windows PowerShell computer game, the Seinfeld Trivia Quiz.

Before you move on to the next chapter, take a few minutes to improve the Seinfeld Trivia

Quiz by completing the following list of challenges.

C H A L L E N G E S

1. Currently, the Seinfeld Trivia Quiz is limited to five questions. Make the quiz
more challenging by adding questions of your own.

2. Rather than limiting the quiz to just multiple-choice questions, add differently
formatted questions, such as true/false and fill in the blank.

3. As currently written, the game displays the number of quiz questions that the
player correctly answered. However, additional detail regarding question results
would provide the player with better feedback. Consider displaying a report at
the end of the game that displays each question, the player’s answer, and the
correct answer.

Implementing
Conditional Logic

5
C H A P T E R

T
he Windows PowerShell scripting language, just like every programming

language, includes language statements that provide you with the ability

to test and evaluate different conditions. Conditional logic is a funda-

mental component of programming logic and it is all but impossible to develop

a PowerShell script of any level of complexity without using it. Conditional logic

facilitates the evaluation of user, system, and file input against each other and

against system resources. Based on the results of conditional tests, your Power-

Shell scripts can exercise tight control over which statements are executed, thus

creating create dynamic scripts that adjust their execution according to the data

they encounter.

In this chapter you will learn how to:

• Implement conditional logic using variations of the if statement

• Embed if statements inside one another to build more complex logic

• Use the switch statement to create logical tests that evaluate multiple

conditions

• Work with different types of comparison and logical operators

C H A P T E R

Project Preview: The Guess My Number Game
In this chapter, you will learn how to create a new Windows PowerShell game called the

Guess My Number game. This game will challenge the player to guess a randomly generated

number in the range of 1 to 100 in as few tries as possible. As Figure 5.1 shows, the game

begins by displaying a welcome screen.

The player dismisses the welcome screen by pressing the Enter key. Next, the game displays

the message shown in Figure 5.2, prompting the player to make an initial guess.

After each guess, the game analyzes the player’s input to see if it was too high, too low, or if

the player correctly guessed the game’s secret number. Figure 5.3 shows the message dis-

played by the game when the player’s guess is too low.

134 Windows PowerShell Programming for the Absolute Beginner

Figure 5.1

The opening
screen for the

Guess My
Number game.

Figure 5.2

The game
generates random

numbers in the
range of 1 to 100.

The game congratulates the player once the secret number is finally guessed, as demon-

strated in Figure 5.4.

Next, game statistics are displayed that remind the player of the value of the secret number

and then show how many guesses it took before the player was able to guess it, as demon-

strated in Figure 5.5.

135Chapter 5 • Implementing Conditional Logic

Figure 5.3

The game
provides the

player with clues
that assist in

homing in on the
secret number.

Figure 5.4

The player has
guessed the

secret number.

Figure 5.5

The game keeps
track of player

guesses and
presents a

summary of
activity at the
end of each

round of play.

136

After pressing the Enter key to dismiss the display of game statistics, the game invites the

player to play another round, as shown in Figure 5.6.

If the player enters Y, a new round of play is started. If the player enters N, the game ends

and the player is returned to the Windows PowerShell command prompt. Any other input

is rejected and the player is again prompted to make a decision as to whether to continue

playing.

Comparing Values
Windows PowerShell provides you with the ability to compare different resources, such as

numbers and strings. To demonstrate this ability, start a new PowerShell session, type 5 –eq 5,

and press Enter, as demonstrated below.

PS C:\> 5 -eq 5

True

–eq is the PowerShell equals operator and is used in this example to determine whether two

numbers are equal. Once evaluated, Windows PowerShell displays the result of its evalua-

tion in the form of a Boolean true or false value. All comparison operations evaluate to a

value of true or false. The next example demonstrates the results returned from the com-

parison between two unequal values.

PS C:\> 5 -eq 10

False

You can also compare different types of values such as strings and numbers, as demon-

strated by the following.

PS C:\> 5 -eq “X”

False

Windows PowerShell Programming for the Absolute Beginner

Figure 5.6

The player can
play as many
rounds as she

wishes without
having to restart

the game to
play again.

In order to perform this evaluation, Windows PowerShell has to convert the values being

compared to the same type. When faced with this situation, PowerShell attempts to convert

the second value to the same type as the first value. A good example of how this type of con-

version can result in a true value is provided here.

PS C:\> 5 -eq “5”

True

In this example, PowerShell converted the string “5” to its numeric equivalent. Windows

PowerShell allows you to compare expressions of various levels of complexity, as demon-

strated here.

PS C:\> 5 + 7 -eq 3 + 3 + 3 + 3

True

Once executed, the value of the expression on the left side of the operator evaluates to 12 as

does the value of the expression on the right operator.

If you find yourself working from the Windows PowerShell command line and
in need of doing a quick calculation or two, there is no need to stop what you are
doing just so you can open up the calculator application and crunch a few num-
bers. Instead, you can save yourself a little time by using Windows PowerShell
as your calculator. For example, if all you need it to do is multiply a couple num-
bers, just type them in using the appropriate PowerShell arithmetic operator, as
demonstrated here.

PS C:\> 5 * 5

25

PS C:\>

Here, the expression 5 * 5 has been typed in at the PowerShell command
prompt. When the Enter key is pressed, PowerShell resolves the expression and
displays the result. As the following example demonstrates, you can key in
more complex mathematic expressions if need be.

PS C:\> 20 * 5 / (10 + 15) * 3

12

PS C:\>

Combining Pipelines and Operators
In addition to comparing strings and numbers, you can compare object data against differ-

ent values as it passes through the PowerShell object pipeline. This provides you with the

TRICK

137Chapter 5 • Implementing Conditional Logic

138

ability to select the data that you want to continue sending through the pipeline, thus dis-

carding the data you do not need to process. For example, using the –eq operator, you can

pull out the name of any currently executing processes, as demonstrated here.

PS C:\> Get-Process | Where-Object {$_.Processname -eq “Winword”}

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

———- ——— ——- ——- —— ——— — —————-

237 11 7540 18992 110 5,286.61 1620 WINWORD

PS C:\>

As you can see, the Get-Process cmdlet has been executed. It generates a list of active

processes running on the computer. This list is then piped to the Where-Object cmdlet,

which evaluates each process looking for one named Winword. If found, information about

the process is displayed.

This type of evaluation is not limited to just the Get-Process cmdlet. It can be applied to the

output of any cmdlet. For example, this next set of statements processes the output gener-

ated by the Get-ChildItem cmdlet, looking for a particular folder.

PS C:\> Get-ChildItem | Where-Object {$_.Name -eq “MyScript”}

Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name

—— ——————- ——— ——

d—— 3/28/2006 1:56 PM MyScripts

PS C:\>

Implementing Conditional Logic
Comparison operations are a critical feature of PowerShell scripting and are required in all

but the simplest PowerShell scripts. However, to be useful, you need to include comparisons

as part of conditional statements. Windows PowerShell supports two different conditional

logic statements, as outlined below.

• if. This statement evaluates a comparison and then executes or skips the execution

of statements located in an associated code block.

• switch. This statement supports the execution of multiple comparison operations, each

of which has the ability to execute statements embedded inside associated code blocks.

Windows PowerShell Programming for the Absolute Beginner

Comparing Data Using the if Statement
The if statement is used to test the value of a condition and to conditionally execute state-

ments located in an associated code block based on the results of that evaluation. You have

already seen the if statement in action on numerous occasions in this book. Its syntax is

outlined here.

if (condition) {code block}

elseif (condition) {code block}

.

.

.

else {code block}

condition is a placeholder representing an expression that evaluates to a Boolean value of

true or false. code block is a placeholder representing any number of statements that are

executed based on the results of the test. The if statement is very flexible and supports a

number of different variations.

elseif is an optional statement that you can include to test an alternative condition. Windows

PowerShell allows you to include as many elseif statements as you want. else is also an

optional statement that, when added, executes its associated control block whenever none of

the preceding conditional tests evaluate as being true.

The if, elseif, and else statements let you execute statements stored in code blocks based

on the evaluation of a test, such as a variable, pipeline object, or an expression. If you cre-

ate an if statement that contains multiple elseif evaluations, the code block belonging to

the first test that evaluates to true is executed and the remaining statements in the if state-

ment are skipped.

Formulating if Statements
To help you understand the basic concept behind the if statement, let’s look at an example.

Suppose you had trouble remembering to pay the rent, which is due on the 15th of every

month. To help remind yourself, you might add a few lines of code to a PowerShell script

that you run every day that checks the date and displays a message if it is the 15th of the

month. In plain English, the logic required to develop this new logic is outlined here.

Get the date

if (Today is the 15th of the month)

{

It is time to pay rent

139Chapter 5 • Implementing Conditional Logic

140 Windows PowerShell Programming for the Absolute Beginner

}

else

{

It is ok to go out to eat

}

As you can see, this pseudocode of an if statement very clearly outlines the logic involved

using a combination of English and if statement syntax. To help highlight key syntactical

elements, I have bolded key elements that make up the statements.

Pseudocode is a term used to describe an English-like outline or sketch of some
or all of the programming logic required to develop a script. By outlining the
logic required to develop a script using pseudocode, programmers provide
themselves with a roadmap that helps to guide the overall design of their
scripts. This helps you to ensure that you know what you are going to do before
you start doing it and can be used to help prevent errors and delays that can
occur when you start working without a plan.

Using this pseudocode outline as a guide, you can then translate the English-like statements

into PowerShell statements.

$today = Get-Date

if ($today.day -eq 15)

{

Write-Host “Remember to pay the rent today.”

}

else

{

Write-Host “It is OK to go out to eat!”

}

In this example, a variable named $today is assigned a value representing the current date,

which is retrieved by executing the Get-Date cmdlet. Next, an if statement has been set up

that evaluates the expression $today.day -eq 15. The first part of this expression retrieves

the day property associated with the current date. This value is then compared to a value of

15 to see if the two values are equal. If they are, the statement stored in the if statement’s

code block is executed. If these two values are not equal, the statement embedded in the

optional else statement’s code block is executed.

HINT

141Chapter 5 • Implementing Conditional Logic

Single Line if Statements
In its simplest form, the if statement consists of a single statement:

if ($x –eq 10) {Write-Host “Game over!”}

In this example, the value of $x is tested to see if it is equal to 10. If this text evaluates to true,

the Write-Host cmdlet located inside the if statement’s code block is executed. This form of

the if statement is best applied to simple conditional tests that contain a single statement

in its code block. For situations where more than one statement must be executed inside the

code block, the multiline form of the if statements should be used.

Multiline if Statements
Often, you will want to execute a number of statements based on the evaluation of a condi-

tional test. In these situations, you can apply an if statement, as demonstrated here.

if ($x –eq 10) {

Clear-Host

Display-Host “Game over! Press Enter to continue.”

Read-Host

}

As this example demonstrates, you can embed any number of statements in an if state-

ment’s code block. In this example, if the value of $x is equal to 10, all of the statements

inside the code block’s opening and closing brackets are executed. If, however, the value of

$x is not equal to 10, the statements located inside the code block are skipped.

Providing an Alternative Course of Action
The if statement is extremely flexible. By including an optional else statement, you can add

additional logic that provides for an alternative course of action in the event the tested con-

dition evaluates as false. For example, you might use the else statement to modify the pre-

vious example as shown here.

if ($x –eq 10) {

Clear-Host

Display-Host “Game over! Press Enter to continue.”

Read-Host

}

else {

Clear-Host

142

Display-Host “Press Enter to try again.”

Read-Host

}

Figure 5.7 provides a flowchart overview of the logic implemented in the previous example.

A flowchart is a tool used by programmers to graphically depict the logical flow
of all or part of a script. By creating a flowchart, you can visually lay out the
overall logical flow of your PowerShell scripts. Once created, you can use a
flowchart to help guide the development of the script.

Testing Different Conditions
The if statement can also be expanded by including one or more optional elseif state-

ments. Each elseif statement provides you with the ability to test for different conditions,

as demonstrated here.

if ($x –eq 10) {

Clear-Host

Write-Host “Game over! Press Enter to continue.”

Read-Host

}

elseif ($x –eq 20) {

Clear-Host

Write-Host “Invalid guess. Press Enter to try again.”

Read-Host

HINT

Windows PowerShell Programming for the Absolute Beginner

Figure 5.7

A depiction of the
logic involved in
an if statement.

}

elseif ($x –eq 30) {

Clear-Host

Write-Host “Invalid input. Press Enter to try again.”

Read-Host

}

else {

Clear-Host

Write-Host “Unknown error. Press Enter to try again.”

Read-Host

}

Here, three separate conditions are evaluated. Windows PowerShell begins this example by

testing the value of the first condition ($x –eq 10). If this test evaluates as being true, the

three statements in its code block are executed and the rest of the statements in the if state-

ment are skipped. If the condition evaluates as being false, the condition associated with

the first elseif statement is executed. If it evaluates as being true, the statements in its code

block are executed and the rest of the statements in the if statement are skipped. Other-

wise, the elseif statement’s code block is skipped and the next elseif statement condition

is evaluated. If its condition evaluates as true, its code block executes and the rest of the

statements in the if statement are skipped. If none of the previous tested conditions evalu-

ate as being true, the code block associated with the else statement is executed.

If you find yourself creating if statements that consist of numerous elseif
statements that evaluate against the same value, you may be better off using a
switch statement, discussed in the next section.

Nesting if Statements
Windows PowerShell lets you nest, or embed, one if statement within another in order to

develop complex conditional tests. Nested if statements allow you to build programming

logic that begins by testing for one condition before deciding whether to further analyze

things by performing additional tests.

As an example of the usefulness of nesting if statements, consider the following (which was

extracted from the Fortune Teller game that you developed in Chapter 3, “Object-Based

Scripting with .NET”).

#Select an answer based on the time and random number

#If it is the afternoon, the fortune teller will be a little cranky

HINT

143Chapter 5 • Implementing Conditional Logic

144

if ($time -gt 12) {

Write-Host

if ($answer -eq 1) { “ Grrrr. The answer is no!” }

if ($answer -eq 2) { “ Grrrr. The answer is never!” }

if ($answer -eq 3) { “ Grrrr. The answer is unclear!” }

if ($answer -eq 4) { “ Grrrr. The answer is yes!” }

}

#If it is morning, the fortune teller will be in a good mood

else {

Write-Host

if ($answer -eq 1) { “ Ah. The answer is yes!” }

if ($answer -eq 2) { “ Ah. The answer is always!” }

if ($answer -eq 3) { “ Ah. The answer is uncertain!” }

if ($answer -eq 4) { “ Ah. The answer is no!” }

}

In this example, the if statement checks to see if $time is greater than 12. If it is, a series of

four if statements, embedded in its code block, are executed, each of which evaluates the

value of a variable named $answer, in order to determine which answer to return to the

player. If the opening if statement evaluates as being false, an else statement executes

instead. Note that four if statements have been embedded within the else statement’s code

block as well.

Making Multiple Comparisons Using the switch Statement
if statements provide you with the ability to compare two conditions. By adding elseif

statements, you can create if statements that perform additional tests. As the number of

additional tests increases, they can become difficult to formulate and understand. Windows

PowerShell provides you with access to the switch statement as an alternative. The switch

statement is used to define a collection of different test and code blocks, each of which eval-

uates against the same expression.

The syntax implemented by the switch statement is outlined here.

switch (expression)

{

{test} {code block}

value {code block}

default {code block}

}

Windows PowerShell Programming for the Absolute Beginner

The switch statement begins by defining the expression against which all comparisons

inside its code block are evaluated. The switch statement supports any of three different

types of comparison operations, as outlined here.

• Test. An expression whose value is evaluated.

• Value. A literal value, such as a string or number.

• Default. Specifies a default code block that is executed if none of the previously

defined comparisons evaluate as being true.

Unlike the if statement, switch statements do not stop executing once a matching value has

been found. Instead, every test specified within a switch statement is evaluated, thus poten-

tially resulting in some or all of the embedded code blocks being executed. The optional

default component and its associated code block are only executed in the event that none

of the previously defined tests evaluate as being true.

To get a good idea of how to work with the switch statement, consider the following example.

$today = get-date

switch ($today.Day)

{

1 {Write-Host “Payday!”}

5 {Write-Host “It is time to water the plants.”}

10 {Write-Host “Remember to pay the bills.”}

15 {Write-Host “Payday!”}

20 {Write-Host “It is time to water the plants.”}

25 {Write-Host “It is time to clean the garage again.”}

default {Write-Host “There are no calendar entries to remember today.”}

}

Here, a series of six conditional tests have been defined, each of which is compared to the

value of $today.Day. Because each of the values being compared is distinct, only one can

result in a match. However, if you were to rework this example by adding additional tests as

shown next, multiple matches could occur and, as has been stated, the switch statement

will execute the code block belonging to any matching statements.

$today = get-date

switch ($today.Day)

{

145Chapter 5 • Implementing Conditional Logic

146

1 {Write-Host “Payday!”}

1 {Write-Host “It is time to water the plants.”}

5 {Write-Host “It is time to water the plants.”}

10 {Write-Host “Remember to pay the bills.”}

10 {Write-Host “It is time to water the plants.”}

15 {Write-Host “Payday!”}

15 {Write-Host “It is time to water the plants.”}

20 {Write-Host “It is time to water the plants.”}

25 {Write-Host “It is time to clean the garage again.”}

25 {Write-Host “It is time to water the plants.”}

default {Write-Host “There are no calendar entries to remember today.”}

}

As you can see, for all but two dates, multiple matches can occur, resulting in the execu-

tion of multiple code blocks. Even though these examples shown here have included single

statements inside each switch statement code block, there is no limit to the number of

statements that you can include.

Windows PowerShell Operators
So far, you have seen the equals (–eg) operator used extensively in this chapter as a means of

comparing different values. Windows PowerShell provides a host of additional operators

that provide you with the ability to test different relationships between values and to

reverse the logic of comparison operators.

Comparison Operators
Windows PowerShell supports a number of additional comparison operators in addition to

the –eq operator, allowing you to perform comparisons that provide you with the ability to

test different values in different ways. For example, you can also compare whether a value

is greater than or less than another value. Table 5.1 lists Windows PowerShell comparison

operators.

Unlike arithmetic operators, Windows PowerShell does not process comparison operators

according to a predefined order or precedence. Instead, each comparison operation is per-

formed in the order in which you define it, starting from left to right. You will see several

examples of these operators in action a little later when you work on the Guess My Number

game.

Windows PowerShell Programming for the Absolute Beginner

Logical Operators
Windows PowerShell provides a small set of logical operators that provides you with the

ability to modify the logical evaluation of a comparison. Table 5.2 lists Windows PowerShell

logical operators.

The –not and ! operators can be used to reverse the logic of any comparison operation, as

demonstrated here.

$x = 1

$y = 2

if (-not ($x -eq $y)) {Write-Host ‘The value of $X does not equal $y.’}

if (! ($x -eq $y)) {Write-Host ‘The value of $X does not equal $y.’}

As you can see, to use either the –not or ! operator, you must place it just before the expres-

sion or value to be tested. When executed, these operators reverse the logic of a comparison

operation.

147Chapter 5 • Implementing Conditional Logic

Operator Description

–eq Equal to

–lt Less than

–gt Greater than

–ge Greater than or equal to

–le Less than or equal to

–ne Not equal to

TA B L E 5.1 W I N D O W S P O W E R S H E L L C O M P A R I S O N O P E R A T O R S

Operator Description

–not Not

! Not

–and And

–or Or

TA B L E 5. 2 W I N D O W S P O W E R S H E L L L O G I C A L O P E R A T O R S

148

Take note of the location and placement of the parentheses in the previous
examples. The inclusion of the –not and ! operators require that you add an
additional set of parentheses in order to meet the syntax requirement of the if
statement, which requires that whatever is being tested be enclosed inside
parentheses.

The –and operator, on the other hand, is used to create a comparison operation that checks

to see whether two different expressions or values both evaluate to true, as demonstrated

by the following.

$x = 1

$y = 2

if (($x -eq 1) -and ($y -eq 2)) {Write-Host ‘The variables equal the expected values.’}

In this example, the statement inside the if statement’s code block is executed only if both

expressions being tested by the if statement evaluate to true. Since both of the expressions

evaluated in the previous example evaluate as being true, the statement located inside the

if statement’s code block is executed.

To help speed up the logical processing of the –and operator, Windows PowerShell imple-

ments a process called short-circuiting, whereby the second expression is evaluated only in

the event the first expression proves true. If the first expression proves to be false, there is

no point to evaluating the second expression, since the end result of the –and logical com-

parison will result in a value of false regardless of the result of the value of the second

expression.

The –or operator is also short-circuited. This operator checks to see whether either of two

different expressions or values evaluates to true, as demonstrated here.

$x = 1

$y = 2

if (($x -eq 1) -and ($y -eq 3)) {Write-Host ‘At least one value matched..’}

In the previous example, the first expression evaluates as true and the second expression

evaluates as false. As long as one of the tested expressions evaluates as true, the statement

located inside the if statement’s code block is executed.

String Comparison Operators
While you can certainly use the six comparison operators listed in Table 5.1 to compare

strings, the result is a case-insensitive comparison. As a result, PowerShell will evaluate

TRAP

Windows PowerShell Programming for the Absolute Beginner

strings such as “abc” and “ABC” as being equal, even though that was not your intention. If

string case is important in your comparison operators, you can instead use any of the case-

sensitive string-comparison operators listed in Table 5.3.

As you can see, Table 5.3 contains two different categories of operators: those that perform

case-sensitive comparison and those that do not. As an example of the difference between

these two categories of string comparison operators, consider the following example.

$x = “abc”

$y = “ABC”

if ($x -ieq $y) {Write-Host ‘A case-insensitive match has occurred!’}

if ($x -ceq $y) {Write-Host ‘A case-sensitive match has occurred!’}

In this example, the first if statement performs a case-insensitive comparison, which results in

an evaluation of true. However, the second if statement performs a case-sensitive comparison,

which results in a value of false.

149Chapter 5 • Implementing Conditional Logic

Operator Description Case-Sensitive

–ieq Equal to No

–ilt Less than No

–igt Greater than No

–ige Greater than or equal to No

–ile Less than or equal to No

–ine Not equal No

–ceq Equal to Yes

–clt Less than Yes

–cgt Greater than Yes

–cge Greater than or equal to Yes

–cle Less than or equal to Yes

–cne Not equal to Yes

TA B L E 5. 3 W I N D O W S P O W E R S H E L L S T R I N G

C O M P A R I S O N O P E R A T O R S

150

Back to the Guess My Number Game
Okay, let’s turn your attention back to the chapter’s main game project, the Guess My Num-

ber game. Through the development of this game, you will get ample opportunity to focus

on the use of conditional logic in order to control the logical execution of Windows Power-

Shell scripts.

Designing the Game
The Guess My Number game begins by displaying the game’s welcome screen and then

prompts the player to guess the game’s randomly generated number, which is in the range

of 1 to 100. Each guess made by the player is evaluated to see if it is too high, too low, or if

the player has guessed the number. The game displays hints to help guide the player’s next

guess when the player’s previous guess is too high or too low. Game statistics are displayed

after the player guesses the game’s secret number and then the player is invited to play

another round.

The Guess My Number game will be completed in 12 steps, as outlined here:

1. Create a new script file and add opening comment statements.

2. Define and initialize the game’s variables.

3. Display the opening welcome screen.

4. Set up a loop to control overall gameplay.

5. Generate the game’s secret number.

6. Set up a loop to collect and analyze player guesses.

7. Collect the player’s input.

8. Analyze player input.

9. Display the game’s statistics.

10. Prompt the player to play another game.

11. Analyze the player’s answer.

12. Clear the screen prior to terminating.

Creating a New Script
The first step in creating the Guess My Number game is to create a new PowerShell file

named GuessMyNumber.ps1 and add the following statements to it.

Windows PowerShell Programming for the Absolute Beginner

#

Script Name: GuessMyNumber.ps1 (The Guess My Number Game)

Version: 1.0

Author: Jerry Lee Ford, Jr.

Date: January 1, 2007

Description: This PowerShell script challenges the player to attempt

to guess a randomly generated number in the range of

1 to 100 in as few guesses as possible.

#

#Clear the Windows command console screen

Clear-Host

As was the case with previous game scripts, you should begin this script using the Windows

PowerShell template developed in Chapter 2, “Interacting with the Windows PowerShell

Command Line.” In addition, you’ll notice that I have added the script’s first statement,

which executes the Clear-Host cmdlet in order to clear the display area.

Define and Initialize Game Variables
The next step in the development of the Guess My Number game is to define and initialize

variables used throughout the script. This is accomplished by appending the statements

shown below to the end of the script file.

#Define variables used in this script

$number = 0 #Keeps track of the game’s secret number

$noOfGuesses = 0 #Keeps track of the number of guesses made

$randomNo = New-Object System.Random #This variable stores a random object

$playGame = “Yes” #Controls when to quit the game

$status = “Play” #Controls the current round of play

$guess = 0 #Stores the player’s guess

$reply = “” #Stores the player’s response when asked to

play again

Comments have been provided for each of the seven variables defined in order to document

and explain their purpose.

151Chapter 5 • Implementing Conditional Logic

152

Displaying the Welcome Screen
Next, let’s set up the game’s welcome screen by adding the following statements to the end

of the script file.

#Display the game’s opening screen

Write-Host “`n`n`n`n`t W E L C O M E T O T H E G U E S S M Y”

Write-Host “`n`n`n`t`t`tN U M B E R G A M E”

Write-Host “`n`n`n`t`t`tBy Jerry Lee Ford, Jr.”

Write-Host “`n`n`n`n`n`n`n`n`n`n Press Enter to continue.”

#Pause the game until the player presses the Enter key

Read-Host

As you can see, the game’s welcome screen consists of a series of Write-Host cmdlets whose

text is formatted using the `n and `t escape characters. The `n escape character generates

newline commands and the `t escape character inserts tab commands. The last statement

uses the Read-Host cmdlet to pause script execution and wait until the player presses the

Enter key.

Setting Up a Loop to Control Gameplay
The overall execution of the game is controlled by a while loop that executes until the player

decides to terminate the game. This is accomplished by adding the following statements to

the end of the script file.

#Loop until the player decides to quit the game

while ($playGame -ne “No”) {

}

As you can see, the while loop’s execution is controlled by the value assigned to the

$playGame variable, which is set equal to No later in the script once the player decides to stop

playing the game. Except for the execution of the Clear-Host cmdlet at the very end of the

script file, all of the remaining code statements that make up the Guess My Number game

are going to be embedded within this while loop.

Generating a Random Number
The next task to be completed is the generation of the game’s secret number, which is gen-

erated using the random object’s Next method. This is accomplished by adding the follow-

ing statement to the beginning of the while loop that you defined in the previous section.

Windows PowerShell Programming for the Absolute Beginner

#Generate the game’s random number (between 1 - 100)

$number = $randomNo.Next(1, 101)

Setting Up a Loop to Collect and Analyze Player Guesses
The next step is to clear the screen and prompt the player to make a guess, which is accom-

plished by adding the following statements just after the previous statements.

#Clear the Windows command console screen

Clear-Host

#Loop until the player guesses the secret number

while ($status -ne “Stop”) {

}

This while loop will be used to control player input and ensure that the input is acceptable.

The loops will execute until the value of $status is set equal to Stop. The code statements

outlined in the next two sections will be embedded within this loop.

Collecting Player Input
The code statement shown next must be keyed in to the previous while loop and is respon-

sible for collecting the user’s input.

#Prompt the player to guess a number

while ($guess -eq “”) {

Clear-Host #Clear the Windows command console screen

Write-Host

#Collect the player’s guess

$guess = Read-Host “ Enter a number between 1 and 100”

}

The loop is designed to repeat in the event the player presses the Enter key without enter-

ing any input. Within this loop, the screen is cleared and the Read-Host cmdlet is used to

prompt the player to take a guess. The player’s answer is then stored in a variable named

$guess.

153Chapter 5 • Implementing Conditional Logic

154

Analyzing Player Input
Now that you have added the code statements required to collect the player’s guess, you

need to add the following statements immediately after the preceding section’s statements.

#Keep track of the number of guesses made so far

$noOfGuesses++

if ($guess -lt $number) { #The player’s guess was too low

Clear-Host #Clear the Windows command console screen

Write-Host “`n Sorry. Your guess was too low. Press Enter to” `

“guess again.”

$guess = “” #Reset the player’s guess

Read-Host #Pause the game until the player presses the Enter key

}

elseif ($guess -gt $number) { #The player’s guess was too high

Clear-Host #Clear the Windows command console screen

Write-Host “`n Sorry. Your guess was too high. Press Enter to” `

“guess again.”

$guess = “” #Reset the player’s guess

Read-Host #Pause the game until the player presses the Enter key

}

else { #The player has guessed the game’s secret number

Clear-Host #Clear the Windows command console screen

Write-Host “`n Congratulations. You guessed my number! Press Enter” `

“to continue.”

$status = “Stop” #Reset the player’s guess

Read-Host #Pause the game until the player presses the Enter key

}

The first statement increments the value of $noOfGuesses in order to keep track of the num-

ber of guesses that the player has made thus far in the game. The rest of the statements are

organized by an if statement. The if statement is set up to test whether the value of the

player’s guess, stored in $guess, is less than the game’s random number’s which is stored in

Windows PowerShell Programming for the Absolute Beginner

$number. If $guess is less than $number, then a message is displayed informing the player that

her guess was too low and $guess is set equal to an empty string (“”) in order to ready it for

the player’s next guess.

Next, an elseif statement has been set up to respond in the event the player’s guess was too

high. Lastly, an else statement is defined that executes when the player correctly guesses

the game’s secret number. Note that if this is the case, the $status variable is assigned a

value of Stop in order to signal that the current round of play is over.

Displaying Game Statistics
The next set of program statements needs to be added to the end of the game’s main con-

trolling while loop.

#Clear the Windows command console screen

Clear-Host

#Display the game’s opening screen

Write-Host “`n Game Statistics”

Write-Host “ ——————————————————————————————”

Write-Host “`n The secret number was: $number.”

Write-Host “`n You guessed it in $noOfGuesses guesses.`n”

Write-Host “ ——————————————————————————————”

Write-Host “`n`n`n`n`n`n`n`n`n`n`n`n`n`n Press Enter to continue.”

#Pause the game until the player presses the Enter key

Read-Host

As you can see, these statements are responsible for clearing the Windows command con-

sole and then displaying game statistics. These statistics are stored in the $number and

$noOfGuesses variables.

Prompting the Player to Play Again
At this point, it is time to prompt the player to play another game and to validate the

player’s response. This is accomplished by appending the following statements to the end of

the game’s while loop, just beneath the previous sets of statements.

#Clear the Windows command console screen

Clear-Host

$reply = “” #Stores the player’s response when asked to play again

155Chapter 5 • Implementing Conditional Logic

156

#Prompt the player to play another round

while ($reply -eq “”) {

Clear-Host #Clear the Windows command console screen

Write-Host

#Collect the player’s answer

$reply = Read-Host “ Would you like to play again? (Y/N) “

#Validate player input, allowing only Y and N as acceptable responses

if (($reply -ne “Y”) -and ($reply -ne “N”)) {

$reply = “” #Reset the variable to its default value

}

}

After clearing the screen, a variable named $reply is defined. This variable is used to store

the player’s response when prompted to play another game. The Read-Host cmdlet is used to

prompt the player to play again. An if statement is then set up to validate the player’s input,

ensuring that only a response of Y or N has been provided. A value of Y indicates that the

player would like to play another game, whereas a value of N indicates that the player is

ready to terminate gameplay.

Analyzing the Player’s Response
Once valid input has been received, the game needs to respond by either resetting game vari-

ables to their default settings to prepare the game for a new round of play or by setting

$playGame equal to No, thus terminating the game’s main while loop upon its next iteration.

This is accomplished by adding the following statements to the end of the game’s main

while loop.

#The player has elected to play again

if ($reply -eq “Y”) {

#Reset variables to their default values

$number = 0

$noOfGuesses = 0

Windows PowerShell Programming for the Absolute Beginner

$status = “Play”

$guess = 0

}

else { #The player has decided to quit playing

$playGame = “No” #Modify variable indicating that it is time to

#terminate gameplay

}

Clearing the Screen
Finally, to finish the development of the game, add the following statements to the end of

the script file, just after the end of its main while loop.

#Clear the Windows command console screen

Clear-Host

After executing the Clear-Host cmdlet, the script will end, returning the player back to the

Windows PowerShell command prompt.

The Final Result
Ordinarily, I would write a script like Guess My Number using functions to help organize

and modularize the script’s logic into discrete units. However, because I have not covered

that topic yet, I had to take a different approach, which involved developing some fairly

complex programming logic that was embedded inside a series of while loops.

When laying out the code of this game, I chose to take the approach of having you first

define each while loop and then come back and add in its code statements as separate steps.

This helped to break the game’s code statements into smaller groupings but also required

that you be extra careful when following behind and keying in the code statements. To help

make sure that you understand what the final result should look like, I have laid out the

entire script for you here:

#

Script Name: GuessMyNumber.ps1 (The Guess My Number Game)

Version: 1.0

Author: Jerry Lee Ford, Jr.

Date: January 1, 2007

157Chapter 5 • Implementing Conditional Logic

158

Description: This PowerShell script challenges the player to attempt

to guess a randomly generated number in the range of

1 to 100 in as few guesses as possible.

#

#Clear the Windows command console screen

Clear-Host

#Define variables used in this script

$number = 0 #Keeps track of the game’s secret number

$noOfGuesses = 0 #Keeps track of the number of guesses made

$randomNo = New-Object System.Random

1 #This variable stores a random object

$playGame = “Yes” #Controls when to quit the game

$status = “Play” #Controls the current round of play

$guess = 0 #Stores the player’s guess

$reply = “” #Stores the player’s response when asked to play again

#Display the game’s opening screen

Write-Host “`n`n`n`n`t W E L C O M E T O T H E G U E S S M Y”

Write-Host “`n`n`n`t`t`tN U M B E R G A M E”

Write-Host “`n`n`n`t`t`tBy Jerry Lee Ford, Jr.”

Write-Host “`n`n`n`n`n`n`n`n`n`n Press Enter to continue.”

#Pause the game until the player presses the Enter key

Read-Host

#Loop until the player decides to quit the game

while ($playGame -ne “No”) {

#Generate the game’s random number (between 1 - 100)

$number = $randomNo.Next(1, 101)

#Clear the Windows command console screen

Clear-Host

Windows PowerShell Programming for the Absolute Beginner

#Loop until the player guesses the secret number

while ($status -ne “Stop”) {

#Prompt the player to guess a number

while ($guess -eq “”) {

Clear-Host #Clear the Windows command console screen

Write-Host

#Collect the player’s guess

$guess = Read-Host “ Enter a number between 1 and 100”

}

#Keep track of the number of guesses made so far

$noOfGuesses++

if ($guess -lt $number) { #The player’s guess was too low

Clear-Host #Clear the Windows command console screen

Write-Host “`n Sorry. Your guess was too low. Press Enter to” `

“guess again.”

$guess = “” #Reset the player’s guess

Read-Host #Pause the game until the player presses the Enter key

}

elseif ($guess -gt $number) { #The player’s guess was too high

Clear-Host #Clear the Windows command console screen

Write-Host “`n Sorry. Your guess was too high. Press Enter to” `

“guess again.”

$guess = “” #Reset the player’s guess

Read-Host #Pause the game until the player presses the Enter key

}

else { #The player has guessed the game’s secret number

159Chapter 5 • Implementing Conditional Logic

160

Clear-Host #Clear the Windows command console screen

Write-Host “`n Congratulations. You guessed my number! Press Enter” `

“to continue.”

$status = “Stop” #Reset the player’s guess

Read-Host #Pause the game until the player presses the Enter key

}

}

#Clear the Windows command console screen

Clear-Host

#Display the game’s opening screen

Write-Host “`n Game Statistics”

Write-Host “ ——————————————————————————————”

Write-Host “`n The secret number was: $number.”

Write-Host “`n You guessed it in $noOfGuesses guesses.`n”

Write-Host “ ——————————————————————————————”

Write-Host “`n`n`n`n`n`n`n`n`n`n`n`n`n`n Press Enter to continue.”

#Pause the game until the player presses the Enter key

Read-Host

#Clear the Windows command console screen

Clear-Host

$reply = “” #Stores the player’s response when asked to play again

#Prompt the player to play another round

while ($reply -eq “”) {

Clear-Host #Clear the Windows command console screen

Write-Host

#Collect the player’s answer

Windows PowerShell Programming for the Absolute Beginner

$reply = Read-Host “ Would you like to play again? (Y/N) “

#Validate player input, allowing only Y and N as acceptable responses

if (($reply -ne “Y”) -and ($reply -ne “N”)) {

$reply = “” #Reset the variable to its default value

}

}

#The player has elected to play again

if ($reply -eq “Y”) {

#Reset variables to their default values

$number = 0

$noOfGuesses = 0

$status = “Play”

$guess = 0

}

else { #The player has decided to quit playing

$playGame = “No” #Modify variable indicating that it is time to

#terminate gameplay

}

}

#Clear the Windows command console screen

Clear-Host

Well, that’s it. As long as you did not make any typos when keying it in, your version of the

Guess My Number game should be ready to run.

161Chapter 5 • Implementing Conditional Logic

162 Windows PowerShell Programming for the Absolute Beginner

Summary
In this chapter you learned how to work with the if and switch statements to develop con-

ditional logic that controls the execution of groups of statements within your Windows

PowerShell scripts. Conditional logic facilitates the evaluation of user, system, and file input

against each other and against system resources. You also learned how to work with a host

of different PowerShell operators, including the logical –and and –or operators which fur-

ther facilitate the development of conditional logic.

Now, before you move on to Chapter 6, “Using Loops to Process Data,” why don’t you set

aside a little extra time to work on and improve the Guess My Number game by tackling the

following list of challenges?

C H A L L E N G E S

1. As it is currently written, the Guess My Number game provides somewhat cryptic
messages when interacting with the user. Consider making the game more intu-
itive by adding additional instructions and guidance.

2. Consider tracking and displaying additional game statistics. For example, you
might create a new variable that keeps track of the total number of games
played. You might also keep track of the number of low versus high guesses in
order to help players detect any trends in their methods of play (e.g., a tendency
to guess too low too often).

3. Consider modifying the game to allow the player to quit at any time, instead of
just at the end of the current round of play. For example, in addition to looking
for a number in the range of 1 to 100, you might also look for the user to instead
type a Q, signaling a desire to quit.

4. Rather than arbitrarily using a range of 1 to 100, consider giving the player the
option of specifying a different range. For example, you might offer to allow the
player to select from three different ranges, such as 1 to 10, 1 to 100 or 1 to 1,000.

Using Loops to
Process Data

6
C H A P T E R

A
s you have certainly noticed already in previous chapters, loops are an

essential element in most scripts, allowing you to develop programming

logic that repeats a series of statements over and over again using a min-

imal amount of code. Without loops, it would be all but impossible to develop

Windows PowerShell scripts that are designed to process large amounts of data.

Loops also provide you with a mechanism for processing collections of data passed

through the object pipeline or stored in arrays. Windows PowerShell provides

you with the ability to set up many different types of loops and also provides you

with commands for breaking out of loops when necessary. This chapter will not

only teach you how to implement loops but also guide you through the creation

of your next Windows PowerShell script, the Rock, Paper, Scissors game.

Specifically, you will learn the following:

• How to set up do while and do until loops

• How to set up for and foreach loops

• How to create while loops

• How to use the Continue and Break keywords to alter loop execution

C H A P T E R

Project Preview: The Rock, Paper, Scissors Game
This chapter’s game project is based on the classic children’s Rock, Paper, Scissors game. In

this game, the player goes head to head against the computer. As with the previous games

that you have seen in this book, the Rock, Paper, Scissors game begins by displaying a welcome

screen, as shown in Figure 6.1.

After dismissing the welcome screen, the player is prompted to make a move by specifying

R for rock, P for paper, or S for scissors, as shown in Figure 6.2. Alternatively, the player can

quit the game at any time by entering Q.

As soon as the player makes a move, the game generates the computer’s move and then

determines the winner of the current round of play, as demonstrated in Figure 6.3.

164 Windows PowerShell Programming for the Absolute Beginner

Figure 6.1

The welcome
screen for the

Rock, Paper,
Scissors game.

Figure 6.2

Four options are
available to
the player.

If the player enters anything other than R, P, S, or Q, the message shown in Figure 6.4 is dis-

played. After dismissing the message, the player is again prompted to make a move.

Game play ends when the player enters Q. In response, the game displays the screen shown

in Figure 6.5, thanking the player for playing.

165Chapter 6 • Using Loops to Process Data

Figure 6.3

All games result
in a win, loss,

or tie.

Figure 6.4

The game
validates player
input, rejecting
any input that

does not meet its
requirements.

Figure 6.5

The player has
decided to stop

playing Rock,
Paper, Scissors.

166 Windows PowerShell Programming for the Absolute Beginner

Finally, just before ending, the game displays statistics that it has been accumulating as

demonstrated in Figure 6.6.

Working with Loops
In order to effectively repeat a series of commands or to process large amounts of data, you

need the ability to create loops. A loop is a set of programming statements that can be repeat-

edly executed as a unit. A loop allows you to write a few lines of code and execute them over

and over in order to perform a great deal of work. Loops help to reduce the number of code

statements required to write a PowerShell script and, by centralizing a specific set of pro-

gramming logic, help to make your scripts more manageable.

Loops are a good tool for processing the contents of arrays and collections of data returned

by cmdlets. As you have already seen, loops can also be set up to repeatedly prompt a user

to supply valid input and to repeatedly execute a collection of statements until a specific

result is achieved. Windows PowerShell provides you with access to a number of different

types of loops, including:

• do while. Iterates as long as a specified condition is true

• do until. Iterates until a specified condition is true

• for. Iterates a set number of times

• foreach. Iterates through all of the elements stored in a collection or array

• while. Iterates as long as a specified condition is true

You will learn how to work with each of these types of loops in the sections that follow.

Figure 6.6

The game keeps
track of wins,

losses, ties, and
the number of
games played.

In addition to the language looping statements listed previously, Windows
PowerShell also provides you with access to the Where-Object and Foreach-
Object cmdlets. As you have already seen, these cmdlets let you loop through
and process lists of data as they pass through the object pipeline.

Setting Up do while Loops
do while loops execute as long as, or while, the tested condition remains true. Because the

condition being tested is evaluated at the end of the loop, you can count on the loop always

executing at least one time. The syntax of the do while loop is as follows.

do {

code block

} while (condition)

condition is an expression that is tested at the end of each iteration of the loop. An example

of how to work with the do while loop is provided here.

$i = 1

do {

Write-Host $i

$i++

} while ($i -le 10)

In this example, a variable named $i is set equal to 1 and then used within the do while loop

that follows. Inside the loop, the value of $i is displayed and then incremented by 1. The con-

ditional test, located at the end of the loop, is then evaluated, and as long as the value of $i

remains less than 10, the loop continues executing. When run, this example displays the

following results.

1

2

3

4

5

6

7

8

9

10

HINT

167Chapter 6 • Using Loops to Process Data

168

One of the things that you need to watch out for when developing your
PowerShell scripts is an endless loop. An endless loop is a loop that never ter-
minates and thus runs forever, draining the computer’s resources. An endless
loop occurs when you create a loop that has no way of stopping its own execu-
tion. In other words, you either forgot to provide a means for terminating it or
applied faulty logic allowing the loop to continue processing forever.

If, while testing a PowerShell script, you think something has gone wrong and
that an endless loop may be executing, you can break out of the loop and ter-
minate your script by pressing Ctrl + C.

Setting Up do until Loops
The do until loop executes until a test condition evaluates to true. To put it another way, the

do until loop executes as long as a condition is false. Like the do while loop, the test performed

by the do until loop is specified at the bottom of the loop, thus ensuring that the loop

always executes at least once.

The syntax of the do until loop is shown here.

do {

code block

} until (condition)

To see how to work with this type of loop, consider the following example.

$i = 1

do {

Write-Host $i

$i++

} until ($i -gt 10)

This example is very similar to the do while example, except that this time the loop has been

set up to run until the value of $i is greater than 10. When executed, this example counts

to 10 exactly like the do while loop did, demonstrating that each of these two loops can be

used interchangeably. The do until loop can also be used to control the collection of user

input as demonstrated in the following example.

$response = “Play”

do {

TRAP

Windows PowerShell Programming for the Absolute Beginner

$response = Read-Host “Do you want to play again (Y/N)”

} until ($response -eq “N”)

Here, a loop has been set up that prompts the user to respond with a value of Y or N. If the

user enters Y, the loop repeats. If this were a real script, the loop would include additional

logic required to perform a particular task, which would be performed again each time the

user responded with an input of Y. As is, the loop continues to run and to prompt the user

for input until the user finally enters a response of N. An example of the output generated

by this example is shown here.

Do you want to play again (Y/N): y

Do you want to play again (Y/N): y

Do you want to play again (Y/N): y

Do you want to play again (Y/N): y

Do you want to play again (Y/N): n

PS C:\>

Creating for Loops
The for statement is used to create a loop that runs until a specified condition becomes

true. The for loop supports a number of different variations but is generally used to execute

a specific number of times, based on the value of a variable that is used as a counter to keep

track of the number of iterations made by the loop. The value of the counter can be

increased or decreased based on the logic being implemented.

The syntax of the for loop is shown here.

for (initialization; condition; step)

{code block}

All three parameters specified above are optional. initialization is a placeholder repre-

senting a variable that will be used to control the execution of the loop. condition represents

an expression that is evaluated each time the loop iterates to determine whether the loop

should run again. As along as the value of the condition remains true, the loop will run again.

step specifies an incremental value that is added to the value specified by the initialization

placeholder. If not specified, Windows PowerShell uses a default value of 1 for step.

As the following example demonstrates, all of the parameters that make up the for loop are

optional.

for (;;) {

Write-Host “Hi!.”

}

169Chapter 6 • Using Loops to Process Data

170

When executed, this example begins looping forever as the following output demonstrates.

To terminate the loop’s executions, you must press Ctrl + C in order to force the termination

of the script.

Hi!

Hi!

Hi!

.

.

.

The for loop has limited value when used in this manner. Instead, it is more typical that the

for loops be set up using all of their parameters as demonstrated here.

for ($i = 1; $i -le 10; $i++) {

Write-Host $i

}

In this example, a for loop has been set up to iterate 10, displaying the value of $i upon each

iteration. Before starting, the loop defines and initializes a variable named $i, setting it

equal to 1. The loop is set up to iterate as long as the value of $i is less than 10. The value of

$i is incremented by 1 at the end of each iteration of the loop. When executed, this exam-

ple displays the following output.

1

2

3

4

5

6

7

8

9

10

As you can see, the for loop is very flexible. For example, the value assigned to the step para-

meter at the end of each iteration can be decremented instead of incremented, as demon-

strated in the following example.

for ($i = 10; $i -ge 1; $i—) {

Write-Host $i

}

Windows PowerShell Programming for the Absolute Beginner

Here, the value of $i is initially set equal to 10 and is decremented by one each time the loop

iterates, resulting in the following output.

10

9

8

7

6

5

4

3

2

1

The for loop can also be used to process the contents of arrays as demonstrated in the fol-

lowing example.

$numbers = @(“a”, “b”, “c”, “d”, “e”)

for ($i = 0; $i –le $numbers.Length - 1; $i++) {

Write-Host $numbers[$i]

}

Here, an array named $numbers is created and populated with a list of 10 numbers. Next, a

for loop is defined. The value of a variable named $i is defined and initialized with a value

of 1. Next, the condition parameter is defined and consists of an expression that uses the

array’s Length property to determine the length of the array and then subtracts 1 from this

value (since arrays are zero based). Lastly, the value of $i is incremented each time the loop

iterates. The output produced when this loop executed is shown below.

a

b

c

d

e

The value assigned to the step parameter does not need to always be 1. As the following

example demonstrates, you can increment (or decrement) this value by any value you want.

$numbers = @(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

for ($i = 0; $i –le $numbers.Length - 1; $i += 2) {

171Chapter 6 • Using Loops to Process Data

172

Write-Host $numbers[$i]

}

Here, the value of $i is incremented by two upon each iteration of the loop, resulting in the

following output.

1

3

5

7

9

As you can see, by incrementing the value of $i by two each time the loop iterates, every

other value in the $numbers array was processed.

For more information on the for loop, enter Get-Help about_for at the Windows
PowerShell command prompt.

Creating foreach Loops
The foreach loop is designed to facilitate the processing of collections of data. It is tailor-

made to process lists, including arrays, in which you do not know in advance how many

elements are stored. While you could certainly use other types of loops to do the same thing,

the foreach loop offers a convenient way to process lists because it does not require you to

set and increment an index number.

The syntax of the foreach loop is shown here.

foreach (element in collection)

{code block}

element is a placeholder representing an element stored in the collection. Upon each itera-

tion of the loop, the value of element is updated with the next item stored in the collection.

collection is the name of the array to be processed.

The following example demonstrates how to set up a foreach loop in order to process the

contents of an array.

$numbers = @(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

foreach ($i in $numbers) {

Write-Host $i

}

HINT

Windows PowerShell Programming for the Absolute Beginner

In this example, an array named $numbers has been defined and assigned a list of 10 num-

bers. A foreach loop is then set up to process each element stored in the array. Upon the first

iteration of the loop, the first element in the array is assigned to $i and the Write-Host

cmdlet is then used to display its value. Upon the second iteration, the value of $i assigned

the value of the second array element. Processing continues until all array elements have

been processed. If executed, this example would display the output shown here.

1

2

3

4

5

6

7

8

9

10

The foreach loop can also be used to process data returned by cmdlets such as Get-Process

and Get-ChildItem that return results in the form of a collection. For example, the following

statements can be added to a Windows PowerShell script to generate a list of all services cur-

rently running on the computer.

foreach ($x in Get-Service) {

if ($x.Status -eq “Running”) {Write-Host $x.Name}

}

As you can see, this example uses a foreach loop to iterate though the output generated by

the Get-Service cmdlet. Each time the loop iterates the name of a service, it is assigned to

$x. An if statement is then used to examine the Status property for each service to deter-

mine whether it is equal to Running. The Write-Host cmdlet is then used to display the name

of each running service by referencing each service’s Name property. When executed, this

example will produce output similar to the following.

ALG

AudioSrv

Browser

CryptSvc

DcomLaunch

173Chapter 6 • Using Loops to Process Data

174

Dhcp

Dnscache

ERSvc

Eventlog

EventSystem

FastUserSwitchingCompatibility

helpsvc

lanmanserver

lanmanworkstation

LmHosts

LxrSII1s

Netman

Nla

NVSvc

omniserv

PlugPlay

Pml Driver HPZ12

PolicyAgent

ProtectedStorage

RasMan

RpcSs

SamSs

Schedule

seclogon

SENS

SharedAccess

ShellHWDetection

Spooler

srservice

SSDPSRV

stisvc

TapiSrv

TermService

Themes

TrkWks

UMWdf

W32Time

WebClient

Windows PowerShell Programming for the Absolute Beginner

winmgmt

wscsvc

wuauserv

WUSB54Gv4SVC

As the preceding example demonstrates, foreach loops can be used to iterate through all of

the command output generated by any cmdlet that generates its output in the form of a col-

lection and does so without requiring that you define and maintain a counter or provide

any other controlling logic.

For more information on the foreach loop, enter Get-Help about_foreach at the
Windows PowerShell command prompt.

Using while Loops
The while loop is designed to create a loop that runs as long as, or while, its conditional test

remains true. The while loop has the following syntax.

while (condition)

{code block}

condition is an expression, which is evaluated each time the loop is run. If the value of

condition evaluates to true, the loop is run. Otherwise, its execution terminates. Obviously,

in order to prevent an endless loop, it is important that you include the programming logic

required to terminate the loop.

The following example demonstrates how to set up a while loop.

$i = 1

while ($i -le 10) {

Write-Host $i

$i++

}

Here, a variable named $i is defined and assigned an initial value of 1. Next, a while loop is

defined that executes as long as, or while, the value of $i remains less than 10.

1

2

3

4

HINT

175Chapter 6 • Using Loops to Process Data

176

5

6

7

8

9

10

You will see examples of the while loop in action later when you work on this chapter’s game

script.

For more information on the while loop, enter Get-Help about_while at the
Windows PowerShell command prompt.

Altering Loop Execution
Sometimes certain conditions may occur in which you will want to prematurely terminate

the execution of a loop. For example, if you wrote a foreach loop in order to search an array

for a given element and you found that element somewhere in the middle of the array,

rather than iterating through the rest of the array just for the fun of it, you’ll probably want

to break out of the loop and get on with the business at hand. Alternatively, you may want to

prematurely stop the current iteration of a loop without actually terminating the loop

itself. Windows PowerShell supports both of these actions through the break and continue

commands.

Using the break Command
When the break command is executed, the innermost loop is terminated and processing

control jumps to the next statement that follows the end of the loop.

Loops can be a little confusing to work with when you are just starting out as a
new programmer. The reason I stated that the break command terminates the
execution of the “innermost” loop in the preceding sentence is because loops
can be embedded within one another. The break command will terminate the
inner loop in which it is embedded but will have no impact on the outer loop.

The following example demonstrates how to use the break command to terminate the pro-

cessing of a loop.

for ($i = 1; $i -le 10; $i++) {

if ($i -eq 5) {

TRAP

HINT

Windows PowerShell Programming for the Absolute Beginner

break

}

Write-Host $i

}

Here, a for loop has been set up to execute 10 times. Within the loop, an if statement has

been added that inspects the value of $i upon each iteration. Upon finding that $i equals 5,

the if statement executes the break command, thus terminating the loop and resulting in

the following output.

1

2

3

4

Using the continue Command
When the continue command is executed, the current iteration of the innermost loop is ter-

minated. However, the loop keeps on executing, if appropriate. For example, if a PowerShell

script executed the continue command while in the middle of processing an array, and the

continue command was executed, any processing for the current array element would be

skipped and the loop would continue on processing the rest of the elements stored in the

array.

The following example demonstrates how to use the continue command to interrupt the

processing of a loop and force it to resume execution back at the beginning of the loop.

$i = 1

while ($i -le 10) {

if ($i -eq 5) {

$i++

continue

}

Write-Host $i

$i++

}

177Chapter 6 • Using Loops to Process Data

178

Here, a while loop has been set up to execute 10 times. Within the while loop, an if state-

ment has been defined that executes the continue command when the value of $i becomes

equal to 5. When this occurs, the current iteration of the loop is terminated and the loop

resumes executing back at the beginning of the loop. The end result is that the fifth itera-

tion of the loop is never finished and the number 5 is not displayed in the output generated

by the example, as shown here.

1

2

3

4

6

7

8

8

9

10

Windows PowerShell also supports the exit command. When executed, this
command terminates the execution of the entire script, not just the current
iteration of a loop. An example of how to use the exit command is provided
here.

if ($x –gt 100) {

Write-Host “Error – Maximum value exceeded.”

exit

}

When included as part of a PowerShell script, the if statement shown above
will terminate the script’s execution if it gets executed and the value of $x
exceeds 100. If run at the Windows PowerShell command line, the exit com-
mand will close the current PowerShell session and also close the Windows
command console window.

Back to the Rock, Paper, Scissors Game
Okay, it is time to turn your attention back to the chapter’s main game project, the Rock,

Paper, Scissors game. The development of this game will demonstrate how to control script

execution using loops to facilitate input collection as well as to control the termination of

gameplay.

TRICK

Windows PowerShell Programming for the Absolute Beginner

Designing the Game
The Rock, Paper, Scissors game challenges the player to outguess the computer by selecting

superior moves each time a new round is played, based on the scoring rules outlined in

Table 6.1.

The player’s move is specified by entering a letter corresponding to a valid move (R for Rock,

P for Paper, or S for Scissors). The computer’s move is generated based on a randomly

selected number. In addition to guiding the player through each round of play, the game

continuously collects a number of game statistics (total games played, wins, losses, and ties),

which are displayed at the end of the game.

The overall logical flow of the Rock, Paper, Scissors game is fairly simple. To set it up, we will

complete its development in twelve steps, as outlined here:

1. Create a new script file.

2. Define and initialize script variables.

3. Display the game’s welcome screen.

4. Set up a loop to control gameplay.

5. Generate the computer’s move.

6. Prompt the player to make a move.

179Chapter 6 • Using Loops to Process Data

Player Choice Computer Choice Results

Rock Rock Tie

Rock Scissors Player Wins

Rock Paper Player Loses

Paper Paper Tie

Paper Rock Player Wins

Paper Scissors Player Loses

Scissors Scissors Tie

Scissors Paper Player Wins

Scissors Rock Player Loses

TA B L E 6 .1 R O C K , P A P E R , S C I S S O R S S C O R I N G R U L E S

180

7. Validate the player’s move.

8. Translate the player’s move.

9. Display the computer’s and player’s moves.

10. Analyze the results of gameplay.

11. Reset variable values for a new round of play.

12. Display game statistics.

Creating a New Script File
Let’s begin the development of the Rock, Paper, Scissors game by creating a new PowerShell

file named RockPaperScissors.ps1 and adding the following statements to it.

#

Script Name: RockPaperScissors.ps1 (The Rock, Paper, Scissors Game)

Version: 1.0

Author: Jerry Lee Ford, Jr.

Date: January 1, 2007

Description: This PowerShell script challenges the player to beat the

computer in a game of Rock, Paper, Scissors

#

#Clear the Windows command console screen

Clear-Host

Defining and Initializing Script Variables
Next, let’s define and initialize variables used throughout the script by appending the fol-

lowing statements to the end of the script file.

#Define variables used in this script

$playGame = “True” #This variable controls game play

$randomNo = New-Object System.Random #This variable stores a random object

$number = 0 #This variable stores the numeric version of the

#computer’s move

$guess = 0 #This variable stores the numeric version of the

#player’s move

Windows PowerShell Programming for the Absolute Beginner

$playerMove = “” #This variable stores the string version of the

#player’s move

$computerMove = “” #This variable stores the string version of the

#computer’s move

$noPlayed = 0 #This variable keeps track of the number of games

#played

$noWon = 0 #This variable keeps track of the number of games won

$noLost = 0 #This variable keeps track of the number of games lost

$noTied = 0 #This variable keeps track of the number of games tied

As you can see, comments were added to document the use and purpose of each variable.

Displaying the Game’s Welcome Screen
The next step is to add the programming statements that are responsible for displaying the

game’s welcome screen. These statements, provided next, should be added to the end of the

script file.

#Display the game’s opening screen

Write-Host “`n`n`n`n`t`t`tW E L C O M E T O T H E”

Write-Host “`n`n`n`t R O C K, P A P E R, S C I S S O R S G A M E”

Write-Host “`n`n`n`t`t`t By Jerry Lee Ford, Jr.”

Write-Host “`n`n`n`n`n`n`n`n`n`n Press Enter to continue.”

#Pause the game until the player presses the Enter key

Read-Host

Setting Up a Loop to Control Gameplay
The overall execution of the Rock, Paper, Scissors game is controlled by a while loop. To set

it up, add the following statements to the end of the script file.

#Loop until the player guesses the secret number

while ($playGame -ne “False”) {

}

As shown above, this loop is set up to execute until the value of $playGame is set equal to

false. This variable is set to true at the beginning of the game and remains that way until

the player later decides to stop playing by entering Q (for quit) when prompted to play

181Chapter 6 • Using Loops to Process Data

182

another round. The rest of the statement that makes up the Rock, Paper, Scissors game will

be added to this loop, with the exception of the statements that display game statistics at

the very end of the game.

Generating the Computer’s Move
As has been the case with previous game scripts, a random number must be generated. This

time, the random number will be used to select the computer move each time a new round

of play occurs. The statements responsible for generating this random number and for asso-

ciating that number with a specific move are shown in the following code, and should be

added to the beginning of the while loop (after the opening curly brace) that you created in

the previous section.

#Generate the game’s random number (between 1 - 3)

#Value assignment: 1 = Rock, 2 = Paper and 3 = Scissors

$number = $randomNo.Next(1, 4)

#Translate the computer’s move to English

if ($number -eq 1) {$computerMove = “Rock”}

if ($number -eq 2) {$computerMove = “Paper”}

if ($number -eq 3) {$computerMove = “Scissors”}

As you can see, the game generated a number in the range of 1 to 3. A value of 1 will repre-

sent a move of Rock. A value of 2 will represent a move of Paper, and a value of 3 represents

a move of Scissors.

Prompting the Player to Make a Move
Next, the game needs to prompt the player to make a move, which is accomplished by

appending the following statements to the end of the game’s main while loop, just before

the closing curly brace.

#Prompt the player to guess a number

while ($guess -eq “”) {

Clear-Host #Clear the Windows command console screen

#Display instructions

Write-Host “`n`n”

Write-Host “ Enter one of the following options:`n”

Write-Host “ —————————————————-`n”

Windows PowerShell Programming for the Absolute Beginner

Write-Host “ R = Rock”

Write-Host “ P = Paper”

Write-Host “ S = Scissors”

Write-Host “ Q = Quit`n”

Write-Host “ —————————————————-`n`n`n`n`n`n`n`n`n`n”

#Collect the player’s guess

$guess = Read-Host “ Make a move”

}

Here, another while loop has been set up that prompted the player to enter one of four

menu options. The player’s input is then stored in a variable named $guess.

Validating the Player’s Move
After the player has responded to the prompt to make a move, the game needs to validate

the player’s input to ensure that it is valid. This is accomplished by appending the following

statements to the end of the game’s main while loop.

#validate the player move

if ($guess -eq “Q”) { #Player has decided to quit playing

Clear-Host #Clear the Windows command console screen

Write-Host “`n`n”

Write-Host “ Game over. Thanks for playing Rock, Paper, Scissors.”

Write-Host “`n`n`n`n`n`n`n`n`n`n`n`n`n`n`n`n`n`n”

Write-host “ Press Enter to view game stats and quit the game.”

Read-Host #Pause while the player reads the screen

$playGame = “False” #Set variable to false indicating the game is over

continue #Skip the remainder of the loop

}

elseif (($guess -ne “R”) -and ($guess -ne “P”) -and ($guess -ne “S”)) {

Clear-Host #Clear the Windows command console screen

183Chapter 6 • Using Loops to Process Data

184

Write-Host “`n`n`n Invalid input. Please try again.”

Read-Host #Pause while the player reads the screen

$guess = “” #Clear out the player’s previous guess

continue #Skip the remainder of the loop

}

Here, an if statement has been set up to determine if the player entered a value of Q or q. If

this is the case, a message is displayed thanking the player for playing the game and then

the value of $playGame is set equal to false. This signals the player’s decision to halt game-

play. Next, a continue command is executed, halting the current execution of the loop.

If the player did not enter Q when prompted to make a move, an elseif statement is then

executed in order to determine whether the player entered an R, a P, or an S (i.e., a valid

move). If the player did not enter a valid move, an error message is displayed asking the

player to try again and the value of $guess is set to an empty string to ready the game for

another guess. Finally, the continue command is executed, forcing a new iteration of the loop.

Assuming that the player entered a valid move, the code in this if statement and its associ-

ated elseif statement is skipped and processing continues with the code statements out-

lined in the next section.

Translating the Player’s Move
Next, add the following statements to the end of the game’s main while loop. These state-

ments will execute only if the statements defined in the previous section have validated the

player’s move.

#Translate the player’s move to English

if ($guess -eq “R”) {$playerMove = “Rock”}

if ($guess -eq “P”) {$playerMove = “Paper”}

if ($guess -eq “S”) {$playerMove = “Scissors”}

As you can see, these statements consist of three if statements that assign a value of Rock,

Paper, or Scissors to the $playerMove variable based on the player’s move (as specified by the

value of $guess).

Windows PowerShell Programming for the Absolute Beginner

Displaying the Computer’s and Player’s Moves
The next set of statements, which should be added to the end of the script’s main while loop,

begin the process of displaying the results of the current round of play. Specifically, they use

the Write-Host cmdlet to display the value of the $computerMove and $playerMove variables,

thus displaying the moves attributed to the computer and player.

Clear-Host #Clear the Windows command console screen

Write-Host “ `n`n`n Results:`n”

Write-Host “ —————————————————-`n”

Write-Host “ The computer picked: $computerMove`n”

Write-Host “ You picked: $playerMove`n”

Write-Host “ —————————————————-`n`n”

$noPlayed += 1 #Increment count by 1

In addition to displaying the moves made during the current round of play, the last state-

ment shown above incremented the value of $noPlayed. This variable is used to keep track of

the total number of rounds played since the Rock, Paper, Scissors game was started.

Analyzing the Results of Gameplay
Next, the game needs to figure out whether the player has won, lost, or tied the game and

then display the results of this analysis, which is accomplished by adding the following

statements to the end of the script’s main while loop.

switch ($computerMove)

{

“Rock” { #The computer picked rock

if ($playerMove -eq “Rock”) {

$noTied += 1 #Increment count by 1

Write-Host “ You tie!”

}

if ($playerMove -eq “Paper”) {

$noWon += 1 #Increment count by 1

Write-Host “ You win!”

}

185Chapter 6 • Using Loops to Process Data

186

if ($playerMove -eq “Scissors”) {

$noLost += 1 #Increment count by 1

Write-Host “ You lose!”

}

}

“Paper” { #The computer picked paper

if ($playerMove -eq “Rock”) {

$noLost += 1 #Increment count by 1

Write-Host “ You lose!”

}

if ($playerMove -eq “Paper”) {

$noTied += 1 #Increment count by 1

Write-Host “ You tie!”

}

if ($playerMove -eq “Scissors”) {

$noWon += 1 #Increment count by 1

Write-Host “ You win!”

}

}

“Scissors” { #The computer picked scissors

if ($playerMove -eq “Rock”) {

$noWon += 1 #Increment count by 1

Write-Host “ You win!”

}

if ($playerMove -eq “Paper”) {

$noLost += 1 #Increment count by 1

Write-Host “ You lose!”

}

if ($playerMove -eq “Scissors”) {

Windows PowerShell Programming for the Absolute Beginner

$noTied += 1 #Increment count by 1

Write-Host “ You tie!”

}

}

}

#Pause the game until the player presses the Enter key

Read-Host

As you can see, these statements have been organized into three tests by the switch state-

ment. The first test checks to see if the computer’s move, as indicated by $computerMove, is

equal to Rock. Likewise, the next two tests examine whether the computer’s move is Paper or

Scissors. Within each of these three tests, three if statements are defined that are respon-

sible for comparing the player’s move, as indicated by $playerMove, to the computer’s move

to determine the results of the current round of play. Based on the results of this analysis,

a message is displayed showing the results. Also, inside each if statement is a statement

that increments the value of the $noTied, $noWon, and $noLost variables as appropriate, thus

keeping track of game statistics.

Resetting Variable Values for a New Round of Play
The last set of statements to be added to the end of the game’s main while loop are outlined

below. These statements are responsible for resetting variable values to their default setting

in order to ready the game for a new round of play.

#Reset variables to prepare for a new round of play

$number = 0 #Reset the computer’s guess back to zero

$guess = 0 #Reset the numeric version of the player’s guess

#back to zero

$playerMove = “” #Reset the string version of the player’s guess back

#to an empty string

$computerMove = “” #Reset the string version of the player’s guess

#back to an empty string

Displaying Game Statistics
The last task performed by the game before it stops running is the display of statistics collected

during gameplay. The statements that display this information are outlined in the follow-

ing code and should be added to the end of the script file below the main while loop.

187Chapter 6 • Using Loops to Process Data

188

#Clear the Windows command console screen

Clear-Host

#Display the game statistics

Write-Host “`n`n`n Game Statistics`n”

Write-Host “ —————————————————-`n”

Write-Host “`n Number of games played: $noPlayed”

Write-Host “`n Number of games won: $noWon”

Write-Host “`n Number of games lost: $noLost”

Write-Host “`n Number of games tied: $noTied`n”

Write-Host “ —————————————————-”

Write-Host “`n`n`n`n`n`n`n Press Enter to continue.”

#Pause the game until the player presses the Enter key

Read-Host

#Clear the Windows command console screen

Clear-Host

As you can see, these statements clear the screen and display game statistics, stored in vari-

ables embedded inside a series of strings.

The Final Result
Well, that’s it. At this point your Rock, Paper, Scissors scripts should be ready to run. So, go

ahead and see how it works. If you run into any errors, use the error messages that are dis-

played to locate the area within your script where errors are occurring and then double-

check your typing in order to find out where you may have made a typo or two.

Summary
In this chapter you learned how to set up the execution of do while, do until, for, foreach,

and while loops. Using these loops, you can create and execute programming logic that

repeatedly processes collections of statements in a centralized location in order to process

large amounts of data. Loops also serve as an effective tool for repeatedly executing a series

of commands over and over again—for example, when prompting for and validating user

input. As you have seen, you can also use loops to process data passed through the object

pipeline or stored in arrays. You also learned how to use the break and continue commands

to exercise control over the execution of loops.

Windows PowerShell Programming for the Absolute Beginner

Now, before you move on to Chapter 7, “Organizing Scripts Using Functions,” why don’t you

set aside a little extra time to improve the Rock, Paper, Scissors game by tackling the fol-

lowing list of challenges?

189Chapter 6 • Using Loops to Process Data

C H A L L E N G E S

1. As currently written, the Rock, Paper, Scissors game is a little cryptic. Consider
adding additional text throughout the game to provide the player with a more
user-friendly experience.

2. In addition to the four options displayed at the beginning of each player turn,
consider adding an option that provides the player with access to a help screen
from which players unfamiliar with the Rock, Paper, Scissors game can learn the
rules for playing the game.

3. At the end of the game, statistics are displayed that show the player the number
of games won, lost, and tied. In addition to showing the player these raw numbers,
consider doing a little arithmetic and providing the player with some percent-
ages (e.g., the percentage of games won, lost, and tied).

4. Consider providing the user with the ability to display game statistics at any point
during the game. For example, you might provide the player with the ability to
enter S in order to display the game statistics.

This page intentionally left blank

Organizing Scripts
Using Functions

7
C H A P T E R

O
ne missing tool in your Windows PowerShell programming arsenal is the

ability to organize your PowerShell scripts into functions. Functions

allow you to write code statements once in a named code block and then

call upon them for execution as many times as necessary from anywhere in your

PowerShell script. By helping to centralize programming logic, functions make

your program code easier to maintain and understand. Functions also affect vari-

able scope, allowing you to further localize variable access, thus helping you to

write tighter code. This chapter will teach you how to work with functions. In

addition, you will also learn how to work with filters, which, although similar to

functions, provide you with a tool for handling large amounts of object pipeline

data more efficiently. You will also learn how to create your next computer game,

the PowerShell Hangman game.

Specifically, you will learn how to do the following:

• Set up functions to perform specific tasks

• Develop functions that accept arguments and return a result

• Use functions as a means of limiting scope

• Create filters in order to efficiently process object pipeline data

C H A P T E R

Project Preview: The PowerShell Hangman Game
This chapter’s game project is the PowerShell Hangman game. Although a little different

from the traditional children’s hangman game, this PowerShell game still captures the

spirit of the original. When first started, the game displays the screen shown in Figure 7.1,

welcoming the player and prompting her for permission to start a round of play.

After getting the player’s permission to start a new round, the game prompts the player to

make a guess, as demonstrated in Figure 7.2.

After each guess, the game displays a screen similar to the one shown in Figure 7.3. The

player is given a maximum of 12 guesses to guess the game’s secret word, which is repre-

sented by a series of underscore characters. This screen also lists every valid guess made so

far by the player (invalid guesses, such as numbers and most special characters are not

accepted or counted against the player). This screen also keeps the player informed of how

many guesses she has left.

192 Windows PowerShell Programming for the Absolute Beginner

Figure 7.1

The PowerShell
Hangman game’s
welcome screen.

Figure 7.2

The player must
enter a single

character guess
and press the

Enter key.

Figure 7.4 shows how the game might look after the player has made a number of additional

guesses.

The game rejects guesses consisting of most special characters, numbers, or multiple letters.

For example, Figure 7.5 shows the screen that is displayed in the event the player attempts

to enter more than one letter at a time.

193Chapter 7 • Organizing Scripts Using Functions

Figure 7.3

The player has
missed her first

guess.

Figure 7.4

The player has
five guesses
remaining to

figure out the
secret word.

Figure 7.5

The game
validates all

input, displaying
errors explaining

why certain
guesses are not

accepted.

194 Windows PowerShell Programming for the Absolute Beginner

Gameplay ends when the player guesses the secret word, at which time the screen shown in

Figure 7.6 is displayed, acknowledging the player’s success and informing her how many

guesses were necessary to win.

Gameplay also ends when the player runs out of guesses, as demonstrated in Figure 7.7.

Changing Script Design Using Functions and Filters
In the last couple chapters you were introduced to a number of different programming con-

structs that you can use to improve the overall organization of your Windows PowerShell

scripts. Using the if and switch statements, you learned how to set up conditional tests and

to group related sets of statements for execution when certain conditions evaluate as being

true. Using the do while, do until, for, foreach, and while loops, you learned how to group

related statements that perform a given task repeatedly, centralizing key programming

logic and reducing the overall number of code statements required to create PowerShell

scripts. Now it is time to learn about functions and filters.

Figure 7.6

The player has
won the game by

guessing the
secret number.

Figure 7.7

The player failed
to guess the

game’s secret
word before
running out
of guesses.

A function is a named code block that can be executed by referencing its name. When called,

all of the statements inside a code block are evaluated and executed. Functions can accept

arguments and return a result. A filter is very similar to a function. There is nothing that you

can do with a filter that you cannot do with a function. The difference between the two is

that filters are designed to more efficiently process large amounts of object pipeline data.

Predefined functions abound in Windows PowerShell. For example, when you
type C: or D: to switch between drives at the Windows PowerShell command
prompt, you are actually executing functions that in turn make calls to the Set-
Location cmdlet.

Improving Script Organization
One of the primary benefits of functions is that they help to reduce the number of lines of

code required to write a script. Functions also facilitate the modular development of scripts

by providing you with the ability to organize code statements into named code blocks,

which can then be executed over and over again from any location within the script file.

Functions make your Windows PowerShell scripts more manageable, providing you with the

building blocks required to create larger and more complex scripts without necessarily

increasing complexity or ending up with tons of code. For example, suppose you were plan-

ning on writing a new PowerShell game that performs the following tasks.

• Prompts the player for permission to execute

• Displays a welcome screen

• Manages the collection of user input

• Displays a short story incorporating user input

• Prompts the player to play again

One way to develop this script would be to begin by defining any variables that are needed

followed by a series of functions, each of which is responsible for managing one of the tasks

outlined above. The rest of the script would then consist of programming logic that calls

upon these functions when needed.

Creating Reusable Code
As has already been stated, functions provide you with a way of improving the organization

of your PowerShell script files by letting you group related sets of code statements together

and then making them callable from any location within the script.

HINT

195Chapter 7 • Organizing Scripts Using Functions

196

I strongly suggest that you use functions as the primary organizational tool
within all your Windows PowerShell scripts. Using functions to organize script
files, you can break things down into smaller and more easily manageable units.
This will help you to separate your programming logic into discrete modules,
which can be created and tested a unit at a time.

Perhaps the biggest benefit provided by functions is their ability to assist you in the devel-

opment of reusable code. As a general rule, anytime you find that you need to perform a

given task more than once, such as retrieving random numbers each time a new round of

gameplay is started, it is probably a good candidate for inclusion in a function. Once created,

you can call upon a given function as many time as necessary, using a single calling state-

ment, thus facilitating code reuse and resulting in a leaner and meaner PowerShell script.

Enhancing Script Organization with Functions
Using functions, you can break down your Windows PowerShell scripts into manageable

blocks of code, calling on each block as appropriate. Functions provide you with the building

blocks required to build modular code, thus facilitating code maintenance. Code testing is

also simplified because, using functions, you can develop your PowerShell script in small

chunks, each of which can be individually tested and verified. Functions also result in smaller

scripts. Smaller scripts are easier to understand and maintain. After all, it is a lot easier to

modify statements located in a single function than it would be to modify that same set of

statements if they were instead used over and over again in different parts of a script file.

Function Structure
In its simplest form, a function consists of the keyword function, followed by the name

assigned to the function and then a code block, as demonstrated here.

function Write-Greeting {

Write-Host “Hello World!”

}

Unlike variables, there are no hard and fast rules that you must follow when
naming functions. However, it is a good idea to assign descriptive names to your
functions that help identify a function’s purpose. In this book, you see that I
have elected to follow a function naming scheme that mimics the naming
scheme used by cmdlets. Specifically, functions are assigned names that begin
with a verb, followed by the - character and then a noun. I suggest that you
develop your own naming scheme and then stick to it in all your Windows
PowerShell scripts. This will help to make you code easier to read and manage.

HINT

HINT

Windows PowerShell Programming for the Absolute Beginner

Here, a function named Write-Greeting has been created. When called, this function uses

the Write-Host cmdlet to display a text string. Of course, you can include as many state-

ments as you want within a function’s code block. You can execute this function from any-

where within the PowerShell script where it has been added by specifying its name, as

demonstrated by the following.

function Write-Greeting {

Write-Host “Hello World!”

}

Write-Greeting

Here, a function is defined and initialized and then executed by specifying its name.

I recommend that you define all your functions in a central location, at the
beginning of your PowerShell script files. This will ensure that all your func-
tions are defined and initialized before they are called upon. It will also help to
make your program code easier to read and will make things a lot easier to find.
As such, I suggest you modify your Windows PowerShell script template as
shown here.

**

#

Script Name:

Version:

Author:

Date:

Description:

#

**

initialization section

functions and filters section

main processing section

HINT

197Chapter 7 • Organizing Scripts Using Functions

198

As you can see, I have added three additional sections to the script template.
The initialization section identifies the location within the script where script-
level variables should be defined and initialized. The functions and filters section
identifies the location where any functions and filters will be defined. The main
processing section identifies the location where the script’s controlling logic
should be placed.

Going forward, this modified version of the template will be used in the devel-
opment of the book’s game scripts.

Processing Arguments
Although there is plenty of value in being able to organize groups of related statements into

named code blocks in order to be able to repeatedly execute them as a unit, functions are

even more useful when you set them up to process inputs passed to them as arguments. For

example, in the next section you will learn how to set up a function that adds together any

two numbers that are passed to it. Functions can also process output generated by cmdlets.

By developing functions that accept and process inputs, referred to as arguments,
you make the functions independent of the PowerShell script in which they
reside. Therefore, you can copy and paste a function into another PowerShell
script and use it without modification, as long as it still gets called and passed
the appropriate inputs in its new script. This facilitates code reuse and over time
you should be able to develop a small library of functions, which you can use as
building blocks in the development of your Windows PowerShell scripts. This
should enable you to work smarter and faster by saving you the trouble of rein-
venting the wheel each time you start a new development project.

Passing Arguments
Windows PowerShell provides you with several different ways of passing arguments to

PowerShell scripts. One way is to specify parameters representing each argument in a comma-

separated list, enclosed in parentheses, immediately after the function name, as demon-

strated by the following.

function Add-Numbers ($x, $y) {

$z = $x + $y

Write-Host “$x + $y = $z”

}

TRICK

Windows PowerShell Programming for the Absolute Beginner

In this example, a function named Add-Numbers has been defined that accepts two arguments,

$x and $y, which it then adds together. When this function is called for execution some-

where within a PowerShell script, you must pass two arguments that correspond to the two

parameters required by the function. You pass these arguments in much the same way that

you pass data to cmdlets, as demonstrated here.

Add-Numbers 3 4

When executed, this statement calls on the Add-Numbers function, passing it a value of 3 and 4.

The function would then execute, displaying the results shown here.

3 + 4 = 7

Another option for setting up functions to accept arguments is to use the param keyword to

define each argument. When used, the param keyword must be the first word specified

inside the function’s code block. Arguments accepted by the function must be specified as

parameters, separated by commas, all of which are enclosed within parentheses, as demon-

strated by the following.

function Add-Numbers {

param ($x, $y)

$z = $x + $y

Write-Host “$x + $y = $z”

}

This function can be called from anywhere within the PowerShell file in which it is defined,

as demonstrated here.

Add-Numbers 1 6

When executed, the Add-Numbers function generates the results shown below.

1 + 6 = 7

Like many cmdlet parameters, function parameters are positional and named.
This means that you can pass arguments to functions as comma-separated lists,
provided that you arrange the arguments in the list to match up correctly with
corresponding parameters defined in the function, or you can pass arguments
by specifying the name of a parameter followed by the argument to be passed
to that parameter. For example, the following statement demonstrates how to
pass arguments to the Add-Number function by position.

Add-Numbers 2 2

TRICK

199Chapter 7 • Organizing Scripts Using Functions

200

Likewise, the following example demonstrates how to pass arguments to the
Add-Numbers function by name.

Add-Numbers -x 2 –y 2

A function can also access arguments passed to it via the $args special variable. The $args

variable is an array that is automatically populated with a list of all incoming arguments

that have been passed to the function, as demonstrated in the following example.

function Add-Numbers {

$z = $args[0] + $args[1]

Write-Host “The total of all arguments passed is $z”

}

Here, the Add-Numbers function has been modified to reference two arguments that it

expects to receive as $args[0] and $args[1]. For example, if called by this statement

Add-Numbers 2 5

this new version of the Add-Numbers function would generate the following output.

The total of all arguments passed is 7

Since $args is an array, you can process it using a foreach loop, as demonstrated here.

function Add-Numbers {

foreach ($i in $args) {

$z += $i

}

Write-Host “The total of all arguments passed is $z”

}

This version of the Add-Numbers function can be called and passed any number of arguments,

as demonstrated by the following.

Add-Numbers 1 6 3 5 4

Windows PowerShell Programming for the Absolute Beginner

Using its foreach loop, the Add-Numbers function will total up each argument passed to it and

display a result similar to that shown here.

The total of all arguments passed is 19

While you can use either the param keyword or $args special variable to access
argument data passed to functions, I suggest that you stick with the param key-
word since it requires that you explicitly identify each incoming argument, mak-
ing your code easier to read and understand.

Specifying Argument Data Type
Windows PowerShell also allows you to specify the data type of parameters in order to

ensure that only values of a specific data type are accepted. This is accomplished by speci-

fying the required data type as part of the parameter definition, as demonstrated here.

function Add-Numbers {

Param ([int]$x, [int]$y)

$z = $x + $y

Write-Host “$x + $y = $z”

}

In this example, [int] was pre-appended to the beginning of each parameter definition in

order to specify that both parameters accept only integer arguments. To see how this works,

you could create this function and then call on it to execute using the following statement.

Add-Numbers -x 2 -y 2

Next, you might try calling on the function using the following statement.

Add-Numbers -x A -y 2

In response, the following error message will be displayed.

Add-Numbers : Cannot convert value “A” to type “System.Int32”. Error: “Input st

ring was not in a correct format.”

At C:\MyScripts\xxx.ps1:14 char:15

+ Add-Numbers -x <<<< A -y 2

As you can see from the text of the error message, Windows PowerShell was not able to con-

vert the argument of A to an integer as required by the function. Now, if you were to go back

and remove the integer requirement for both of the function’s parameters, you could call

HINT

201Chapter 7 • Organizing Scripts Using Functions

202

on the function as shown next and this time you won’t see an error message. Instead,

PowerShell appends both arguments together.

A + 2 = A2

Windows PowerShell supports a wide range of data types. Table 7.1 lists a number of these

data types. You can specify any of these data types when defining function arguments.

Assigning Default Values to Arguments
Windows PowerShell also allows you to assign default values to function arguments, thus

initializing a default value that will be used in place of an argument when that argument

is not passed as expected to the function. For example, the Add-Numbers function, shown next,

has been modified to assign a default value of zero to both of its parameters.

function Add-Numbers {

Param ([int]$x = 0, [int]$y = 0)

$z = $x + $y

Write-Host “$x + $y = $z”

}

If you were to call on this version with the Add Numbers function as shown below, Windows

PowerShell would assign 2 as the value of the $y parameter and 0 as the value of the $x para-

meter.

Add-Numbers -y 2

Windows PowerShell Programming for the Absolute Beginner

Data Type Data Type

[array] [hashtable]

[bool] [int]

[byte] [long]

[char] [single]

[decimal] [string]

[double] [switch]

[float]

TA B L E 7.1 W I N D O W S P O W E R S H E L L D A T A T Y P E S

When called as shown, the Add-Numbers function generates the following output.

0 + 2 = 2

Processing Incoming Data
Functions get access to pipeline data through a special variable named $input. This variable

is automatically populated with all incoming pipeline objects before the function begins to

execute. If necessary, Windows PowerShell will delay the execution of a function until all

incoming pipeline object data has been collected.

As an example of how to access incoming pipeline object data, consider the following example.

function Get-FileNames {

$input | Where-Object {$_.Name –ne “WINDOWS” } | Sort-Object

}

Here, a function named Get-FileNames has been defined. The function uses the $input vari-

able to collect any data passed to the function via the object pipeline. This data is then

passed down the pipeline to the Where-Object cmdlet. The Where-Object cmdlet then filters

out any object reference to a folder named Windows. Any remaining object data is then

passed to the Sort-Object cmdlet.

Before running the preceding example, you need to change the current working directory

to the root of your C: drive where the Windows folder resides using the Set-Location cmdlet,

as demonstrated here.

Set-Location C:\

To run the function and insert it into the object pipeline, you could type the following state-

ment. It executes the Get-ChildItem cmdlet and then pipes its output to the Get-Filenames

function.

Get-ChildItem | Get-Filenames

When executed, the function will display output similar to the following.

Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name

—— ——————- ——— ——

d—— 3/28/2006 1:56 PM MyModules

203Chapter 7 • Organizing Scripts Using Functions

204

-a—- 4/10/2003 1:19 AM 0 AUTOEXEC.BAT

d—— 4/20/2006 12:02 PM cgi-bin

-a—- 4/10/2003 1:19 AM 0 CONFIG.SYS

d—— 4/10/2003 1:22 AM Documents and Settings

-a—- 10/11/2004 9:01 PM 1810432 ffastunT.ffl

d—— 9/8/2006 8:16 PM hegames

-a—- 10/15/2006 7:59 AM 119583 hpfr5100.log

d—— 6/4/2003 8:58 PM I386

d—— 9/5/2005 10:21 PM ICON Collection

-a—- 9/18/2005 4:28 PM 1801287 MyApplication

d—— 3/28/2006 1:56 PM MyModules

d—— 10/15/2006 11:47 AM MyScripts

-a—- 2/20/2006 1:52 PM 1323 net_save.dna

d—— 9/15/2005 9:04 PM NVIDIA

d—— 10/24/2005 11:48 PM Perl

-a—- 6/24/2005 9:39 PM 584 Plugins

d-r— 9/9/2006 5:10 PM Program Files

-a—- 3/25/2005 3:29 PM 108 PS.PS

d—— 2/26/2006 3:25 PM REALbasic CR-ROM

d—— 10/8/2006 2:49 PM temp

d—— 9/18/2006 2:01 PM TextFiles

d—— 10/6/2003 10:20 PM Westwood

-a—- 10/15/2006 11:57 AM 0 yyyy.txt

Returning a Result
PowerShell functions are capable of returning data back to calling statements. This is

accomplished by setting a variable to the value you want to return and then making a ref-

erence to that variable in the last statement executed by the function, as demonstrated in

the following example.

function Add-Numbers {

Param ([int]$x = 0, [int]$y = 0)

$result = $x + $y

$Result

}

Windows PowerShell Programming for the Absolute Beginner

In this example, the Add-Numbers function takes two integer values passed to it as arguments

and adds them together. It then returns this result back to the statement that called it by

assigning the value to be returned to the $result variable, which is then referenced against the

last statement executed by the function. The following statements demonstrate how to execute

this version of the Add-Numbers function and then retrieve and display the data that it returns.

$x = Add-Numbers 2 2

Write-Host “2 + 2 = $x”

When called, the function is passed arguments of 2 and 2. Once executed, the function

returns a value of 4, which is then assigned to the $x variable in the statement that executed

it. The proof that everything worked as expected is provided when the second statement

shown above executes and displays the following output.

2 + 2 = 4

Restricting Variable Scope
Up to this point in the book, all the examples that you have seen of variable usage have

involved the use of script-level variables, meaning that once defined, the variables could be

referenced from any location within your PowerShell scripts. However, now that functions

have been introduced, things are going to change.

As was discussed in Chapter 4, access to variables is restricted by scope. Within a PowerShell

script, any variable defined outside of a function is a script-level variable. Script-level variables

are also local variables to all parts of the script file residing outside of functions. However,

functions can still access script-level variables using a modified variable reference that

includes the script label. Specifically, script-level variables can be accessed directly by name

from any function defined within the script using the following syntax.

$localVariable = $script:variableName

Script-level scope is established each time a Windows PowerShell script is exe-
cuted and ends when the script stops running.

Here, $localVariable is the name of a new variable that is local to the function in which it

is defined. $script identifies the resource being referenced as a script-level variable and

variableName specifies the name assigned to the variable. For example, in the following

example, a script-level variable named $userName has been defined. Next, a call is made to a

function named Get-UserName. Within the function, the $userName variable is referenced and

assigned a value using the Read-Host cmdlet.

HINT

205Chapter 7 • Organizing Scripts Using Functions

206

$userName = “”

function Get-UserName {

$script:userName = Read-Host “What is your name?”

}

Get-UserName

Write-Host “Hello $userName”

Variables can also be defined within functions. In this case, any such variables are local in

scope to the function. If you want, you can restrict access to these variables by declaring

them as private. Variables with a private scope can only be accessed within their current

scope. Therefore, a variable declared within a function that has a private scope can only be

accessed within its function, as demonstrated below.

function Get-UserName {

$private:x = Read-Host “What is your name?”

Write-Host “Hello $x”

}

Get-UserName

In this example, a variable named $x is declared inside the Get-UserName function and

assigned a value supplied by the user. The value of $x is then displayed by using the

Write-Host cmdlet, which also resides inside the function. When executed, the name supplied

by the user is displayed. For example, if the user entered William, the following output

would be displayed.

Hello William

However, if you were to modify this example by moving the Write-Host statement outside of

the function as shown below, the user’s name would not be displayed since $x has a private

scope and exists only within the function where it is defined.

function Get-UserName {

$private:x = Read-Host “What is your name?”

}

Windows PowerShell Programming for the Absolute Beginner

Get-UserName

write-Host “Hello $x”

When executed, this example displays the following output, regardless of the name entered

by the user:

Hello

Note that even though the value of $x does not exist outside of the script in
which it was defined, the preceding example will not generate an error because
Windows PowerShell does not force programmers to formally declare and ini-
tialize variable values prior to using them. While this may cause unexpected
problems in most scripts, in the preceding example this behavior allowed the
graceful transition.

Replacing Functions with Filters
A filter is very much like a function, except that instead of waiting for all incoming data to

be received and stored in $input, filters have immediate access to incoming data as it

becomes available via the $_ variable. Filters are structured exactly like functions, except

that the filter keyword is specified in place of the function keyword, as demonstrated by

the following.

filter Get-OddEven {

$x = $_ % 2

if ($x -eq 1) {

$result = “Odd”

}

else {

$result = “Even”

}

$result

}

In this example, a filter named Get-OddEven has been created that determines whether a

number is odd or even. This filter takes any numeric value passed to it and divides it by two

using the modulus operator (%). If the result of this operation yields a value of one, then the

value passed to the function was an odd number; otherwise, it was an even number.

TRAP

207Chapter 7 • Organizing Scripts Using Functions

208

If called by the following statement

@(5, 4, 6) | Get-OddEven

the Get-OddEven function will display the following output.

Odd

Even

Even

In reality, filters and functions are pretty much equivalent. The difference is that filters are

able to act upon pipeline object data as soon as it becomes available through the $_

special variable, whereas functions have to wait for all incoming pipeline data to arrive and

populate the $input variable before processing. To process a large list of data objects stored

in the $input variable, you will usually have to set up a loop inside a function in order to

iterate through each object. Filters also eliminate any need to use loops to process incoming

data. As a result of these differences, filters can be more efficient and result in faster pro-

cessing than functions when large amounts of data are being passed through the object

pipeline.

Often, you can forego the creation of custom filters and instead used the Foreach-Object and

the Where-Object cmdlets to filter data from the object pipeline. However, while these

cmdlets are sufficient for simple operations, to perform complex logical operations on

pipeline data you will need to set up a filter.

Back to the PowerShell Hangman Game
Okay, it is time to turn your attention back to the chapter’s main game project, the Power-

Shell Hangman game. The PowerShell Hangman game is a word-guessing game in which the

player is challenged to guess a randomly selected secret word, a letter at a time. To win,

the player must guess each letter in the word in 12 guesses or fewer.

The overall construction of the PowerShell Hangman game will be completed in 10 steps, as

outlined here.

1. Create a new script file using the PowerShell script template.

2. Define and initialize game variables in the initialization section.

3. Define functions located in the functions and filters section.

4. Prompt the player for permission to play the game.

5. Create a loop to control overall gameplay.

6. Randomly select the game’s secret word.

Windows PowerShell Programming for the Absolute Beginner

7. Create a loop to control the collection and analysis of player input.

8. Collect and validate player guesses.

9. Display the result of each guess.

10. Determine when the game is over.

11. Challenge the player to play again.

Creating a New Script
The first step in the creation of the PowerShell Hangman game is to create a new script file

named Hangman.ps1 using the new version of the Windows PowerShell script template, as

shown below.

#

Script Name: Hangman.ps1 (The PowerShell Hangman Game)

Version: 1.0

Author: Jerry Lee Ford, Jr.

Date: January 1, 2007

Description: This PowerShell script challenges the player to play

a computer version of Hangman

initialization section

functions and filters section

main processing section

Defining and Initializing Script-Level Variables
The next step in the creation of the PowerShell Hangman game is to define and initialize

script-level variables. This is accomplished by adding the following statements to the ini-

tialization section of the script file.

#Define variables used in this script

$playGame = “False” #Controls gameplay and when to stop gameplay

$randomNo = New-Object System.Random #This variable stores a random object

209Chapter 7 • Organizing Scripts Using Functions

210

$response = “” #Store the player’s input when prompted to play a game

$number = 0 #Stores the game’s randomly generated number

$secretWord = “” #Stores the secret word for the current round of play

$attempts = 0 #Keeps track of the number of valid guesses made

$status = “True” #Controls the current round of play

$guesses = “” #A list of letters by the player during gameplay

$reply #Stores player letter guesses

$tempstring #Stores a display string with hidden characters that is used

#to represent the secret word during gameplay

$validReply #Stores the player’s response when prompted to play a new game

$rejectList = ‘~!@#$%^&-_={}]|\:;”,.?/<>’ #String listing unacceptable input

$GuessesRemaining #Keeps track of the number of guesses the player has left

#Create an Associative array and load it with words

$words = @{}

$words[0] = @(“”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”)

$words[1] = @(“C”, “O”, “M”, “M”, “A”, “N”, “D”, “E”, “R”)

$words[2] = @(“F”, “L”, “A”, “G”)

$words[3] = @(“T”, “O”, “A”, “S”, “T”, “E”, “R”)

$words[4] = @(“M”, “A”, “R”, “K”, “E”, “R”)

$words[5] = @(“P”, “I”, “C”, “T”, “U”, “R”, “E”)

$words[6] = @(“D”, “E”, “S”, “K”)

$words[7] = @(“G”, “L”, “O”, “B”, “E”)

$words[8] = @(“S”, “P”, “E”, “A”, “K”, “E”, “R”)

$words[9] = @(“B”, “A”, “C”, “K”, “Y”, “A”, “R”, “D”)

$words[10] = @(“P”, “E”, “N”, “C”, “I”, “L”)

Comments have been added that describe the use and purpose of each variable. Take note

of the $words array, which is used to store 10 words from which the game will randomly

select each time a new game is played. Each element in the $words array is actually an array

itself whose elements consist of the letters that spell out a given word. Also note that

$words[0] contains a list of 10 empty strings and not the letters of a game word. This array

is used later in the script to keep track of correct player guesses.

Defining Custom Functions
The PowerShell Hangman game has one custom function, shown next, that you need to add

to the functions and filters section of the script file. The function’s name is Check-Answer

and, as its name implies, its job is to determine whether the player’s guess is correct.

Windows PowerShell Programming for the Absolute Beginner

#This function determines if the player’s guess is correct or incorrect

function Check-Answer {

param ($reply) #Argument containing the player’s guess

#Access script-level variable representing valid users guesses and

#add the current guess to it

$script:guesses = $script:guesses + “ “ + $reply

#Loop through each letter in the secret word (e.g., each element in the

#array) and see if it matches the player’s guess

for ($i = 0; $i -le $secretWord.length - 1; $i++) {

if ($secretWord[$i] -ne $reply) { #The guess does not match

#Place an underscore character into $word[0] in place of the letter

if ($words[0][$i] -eq “”) {$words[0][$i] = “_”}

}

else { #The guess matches

#Place the letter being guessed into $word[0]

$words[0][$i] = $reply

}

}

}

This function begins by defining a parameter named $reply, which will be used to store the

player’s most recent guess. The first thing this function does after being called is append the

letter being processed ($reply) to a script-level variable named $guesses. $guesses is used to

store a string containing all of the guesses made by the player and is displayed later in the

game to remind the player of the number of guesses that have already been made.

Next, a for loop is set up to iterate through the contents of an array named $secretWord.

This array is populated later in the script file with a copy of all the letters that make up the

game’s randomly selected secret word. The loop iterates through each letter (array element)

that makes up the secret word. If the loop finds a letter in the secret word that matches the

player’s guess, it writes that to the corresponding array element in the $word[0] array. Thus

all of the letters that make up the game’s secret word are represented by the _ characters

and since letters are guesses, the appropriate _ character is replaced by letter guessed by

the player.

211Chapter 7 • Organizing Scripts Using Functions

212

Prompting the Player to Start the Game
Before starting a new round of play, the game requires that the player give it permission to

do so. This is accomplished by adding the following statements to the beginning of the

script file’s main processing section.

#Prompt the player to guess a number

while ($playGame -ne “True”) {

Clear-Host #Clear the Windows command console screen

#Display the game’s opening screen

Write-Host “`n`n`n`n”

write-Host “ Welcome to the *********”

Write-Host “ * *”

Write-host “ PowerShell Hangman Game! O *”

Write-host “ __|__ *”

Write-host “ | *”

Write-host “ / \ *”

Write-host “ *”

Write-host “ *”

Write-host “ *”

Write-host “ *******”

#Collect the player’s guess

$response = Read-Host “`n`n`n`n`n`n`n`n Would you like to play? (Y/N)”

#validate the player’s input

if ($response -eq “Y”){

$playGame = “True”

}

elseif ($response -eq “N”) {

Clear-Host

Write-host “ `n`n Please return and play again soon.”

Read-Host

exit

}

else {

Clear-Host

Windows PowerShell Programming for the Absolute Beginner

Write-Host “`n`n Invalid input. Please press Enter try again.”

Read-Host

}

}

As you can see, this part of the script is controlled by a while loop that iterates until the value

of $playGame is set equal to true. Within the loop, a text-based graphic showing the hangman

character is displayed and the player is prompted to enter a value of Y or N. If the player

responds by entering Y, the value of $playGame is set to true, and as a result, the while loop

ends and the rest of the script is executed.

If the player responds instead by entering N, the exit command is run, thus terminating the

execution of the game. If the player responds by entering anything else, the loop runs again

to prompt the player to enter a valid selection.

Setting Up a Loop to Control Gameplay
The rest of the script is controlled by a while loop that executes until the player decides to

end the game. The statements that make up this loop are shown next and should be

appended to the end of the script’s main processing section. The rest of the statements that

make up this script will be embedded within this loop.

#Prompt the player to guess a number

while ($status -eq “True”) {

}

Selecting a Secret Word
The next step in the development of the PowerShell Hangman game is to embed the follow-

ing statements in the script’s main loop.

#Reset variables at the beginning of each new round of play

$tempString = “”

$words[0] = @(“”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”, “”)

$attempts = 0

$guesses = “”

$reply = “”

213Chapter 7 • Organizing Scripts Using Functions

214

#Generate a random number between 1 and 10

$number = $randomNo.Next(1, 11)

$secretWord = $words[$number] #Populate an array with the letters that

#make up the game’s secret word using the

#random number to specify the array index

A new round of gameplay begins each time this loop iterates. When this happens, numer-

ous variables need to be reset to their default values to get the game ready. Also, a random

number must be generated and used to select a new word for the player to guess.

Setting Up a Loop to Process User Guesses
Next, another loop needs to be set up to collect and process the player’s guesses. The code

statements that perform this task are shown next and should be embedded inside of the

game’s main loop, immediately after the last set of statements that you entered.

#Create a loop to collect and analyze player input

while ($reply -eq “”) {

}

Collecting and Validating User Input
Next, you need to add the statements that are responsible for collecting and validating

player input. These statements are shown next and should be embedded within the previous

while loop.

Clear-Host #Clear the Windows command console screen

$reply = Read-Host “`n`n Enter a guess” #Collect the player answer

if ($reply -eq “”) { #If an empty string was submitted, repeat the

continue #loop

}

#It is time to Validate player input

if ($reply.Length -gt 1) { #Limit input to one character at a time

Windows PowerShell Programming for the Absolute Beginner

Clear-Host #Clear the Windows command console screen

Write-Host “`n`n Error: You may enter only one letter at a time.”

Read-Host “`n`n`n`n`n`n`n`n`n`n`n Press Enter to continue.”

$reply = “” #Clear out the player’s input

continue #Repeat the loop

}

$reply = [int]$reply #See if the user’s guess can be converted to an

#integer

if ($reply.GetTypeCode() -ne “String”) { #Numeric input is not allowed

Clear-Host #Clear the Windows command console screen

Write-Host “`n`n Error: Numeric guesses are not allowed.”

Read-Host “`n`n`n`n`n`n`n`n`n`n`n Press Enter to continue.”

$reply = “” #Clear out the player’s input

continue #Repeat the loop

}

if ($rejectList -match $reply) {

Clear-Host #Clear the Windows command console screen

Write-Host “`n`n Error: Special characters are not permitted.”

Read-Host “`n`n`n`n`n`n`n`n`n`n`n Press Enter to continue.”

$reply = “” #Clear out the player’s input

continue #Repeat the loop

}

Clear-Host #Clear the Windows command console screen

$attempts++ #Only increment for good guesses

The loop begins by prompting the player to enter a guess (i.e., a letter). The player’s input is

then assigned to a variable named $reply. A check is made to ensure that the player did not

respond by simply pressing the Enter key. If this is the case the continue command is exe-

cuted and the loop iterates and runs again.

215Chapter 7 • Organizing Scripts Using Functions

216

Take note of the expression evaluated as the condition for the last two if state-
ments. The first of these two if statements uses the GetTypeCode() method.
This method retrieves the data type associated with a given resource. The
second of these two if statements uses the –match comparison operator to
determine whether the value of $reply can be found anywhere within the
values stored in $rejectList. You will learn more about the –match operator in
Chapter 8, “Working with Files and Folders.”

Next, a series of if statements is executed. Each if statement is responsible for helping to

validate a different aspect of the player’s input. The first if statement executes the continue

command if it finds that the player entered two or more characters as input. The second if

statement checks to see if the player entered a number instead of a letter. Note that just

before the second if statement executes, the value of $reply is converted to an integer

([int]$reply). If the conversion is successful, the if statement executes and the player is

informed that numeric input is not allowed. Otherwise, the second if statement’s code

block is skipped. The third if statement checks to see if the player entered a special charac-

ter instead of a letter. A list of special characters is stored in $rejectList. If a special char-

acter is found, the continue command is executed.

If none of the three if statements finds a problem with the player’s input, the player’s guess

is considered to be valid and the value of $attempts is incremented by 1. Note that since each

if statement’s code block executes the continue command when invalid input is found, the

value of $attempts is not incremented for these guesses and thus the guesses do not count

against the player.

Displaying the Results of Each Guess
Once a valid guess has been made, the game needs to process it and display the information

showing the player the current status of the game. This is accomplished by adding the fol-

lowing statements to the bottom of the previous while loop, immediately after the last set

of statements that you just added.

#Now that player input has been validated, call on the Check-Answer

#function to process the input

Check-Answer $reply

$tempString = “” #Clear out this variable used to display the

#current state of the word being guessed

#Loop through $words[0] and create a temporary display string that

#shows the state of the word being guessed

HINT

Windows PowerShell Programming for the Absolute Beginner

for ($i = 0; $i -le $words[0].length - 1; $i++) {

$tempString = $tempString + “ “ + $words[0][$i]

}

#Display the current state of the secret word based on the input

#collected from the player

Write-Host “`n`n Results:`n”

Write-Host “ —————————————————————`n”

Write-Host “ $tempString`n”

Write-Host “ —————————————————————`n`n”

Write-Host “ Letters that have been guessed: $guesses`n”

#Calculate the number of guesses that the player has left

$GuessesRemaining = (12 - $attempts)

#Display the number of guesses remaining in the current round of play

Write-Host “ Number of guesses remaining: $GuessesRemaining”

The first statement shown above calls on the script’s Check-Answer function, passing it the

player’s guess as an argument. Next, a variable named $tempString is cleared out and then

assigned the contents stored in the $words[0] array, thus creating a string representing the

current state of the game’s secret word, as guessed by the player. This string is then dis-

played. The value of $guesses is also displayed, showing the player how many letters have

been guessed so far. Lastly, the value of $guessesRemaining is calculated and displayed, show-

ing the player how many guesses are left.

Determining When the Game Is Over
Now it is time to see if the game is over. Gameplay ends when either the player guesses the

game’s secret word or the number of guesses has been exhausted. To accomplish these two

checks, add the following statements to the bottom of the previous while loop, immediately

after the last set of statements that you just added.

#Pause the game to allow the player to review the game’s status

Read-Host “`n`n`n`n`n`n`n`n`n Press Enter to continue”

#The secret word has been guessed if there are no more underscore

#characters left in it - therefore the player has guessed it

if ($tempString -notmatch “_”) {

217Chapter 7 • Organizing Scripts Using Functions

218

Write-Host “`n Game over. You have guessed the secret word!” `

“in $attempts guesses.`n`n”

Write-Host “ The secret word was $secretWord `n`n”

Write-Host “`n`n`n`n`n`n`n`n” `

“`n`n`n`n`n`n`n”

Read-Host #Pause gameplay

$reply = “Done” #signal the end of the current round of play

continue #Repeat the loop

}

#The player is only allowed 12 guesses, after which the game ends

if ($attempts -eq 12) {

Clear-Host

Write-Host “`n Game over. You have exceeded the maximum allowed” `

“number of guesses.`n`n”

Write-Host “ The secret word was $secretWord `n`n”

Write-Host “ The best you could do was $tempString`n`n`n`n`n`n`n`n” `

“`n`n`n`n`n`n`n”

Read-Host #Pause the game

$reply = “Done” #signal the end of the current round of play

continue #Repeat the loop

}

$reply = “” #Clear out the player’s input

As you can see, the statements shown above are organized into two if statements. The first

if statement checks to see if the player has won the game. If this is the case, then every let-

ter that makes up the secret word will have been guessed and the value stored in $temp-

String will not contain any underscore characters. The second if statement checks to see if

the value of $attempts is equal to 12, indicating that the player has run out of guesses with-

out discovering the game’s secret word. If either of the two conditions tested by these two

if statements provides true, the value of $reply is set equal to Done, terminating the execu-

tion of the while loop that is responsible for collecting and processing player input.

Windows PowerShell Programming for the Absolute Beginner

Challenging the Player to Play Another Game
Finally, to wrap up the PowerShell Hangman game, you need to add the following state-

ments at the bottom of the game’s main while loop. These statements are responsible for

challenging the player to play another game.

$response = “” #Reset value to allow the loop to continue iterating

#it is time to prompt the player to play another round

$validReply = “False” #Set variable to ready its use in the while loop

#Loop until valid input is received

while ($validReply -ne “True”) {

Clear-Host #Clear the Windows command console screen

#Prompt the player to play a new game

$response = Read-Host “`n`n Play again? (Y/N)”

#Validate the player’s input #Keep playing

if ($response -eq “Y”){

$validReply = “True”

$status = “True”

}

elseif ($response -eq “N”) { #Time to quit

Clear-Host #Clear the Windows command console screen

Write-host “ `n`n Please return and play again soon.”

Read-Host #Pause gameplay

$validReply = “True”

$status = “False”

}

else { #Invalid input received

Clear-Host #Clear the Windows command console screen

Write-Host “`n`n Invalid input. Please press Enter to try again.”

219Chapter 7 • Organizing Scripts Using Functions

220 Windows PowerShell Programming for the Absolute Beginner

#$validReply = “False”

Read-Host #Pause gameplay

}

}

As you can see, the player is required to provide a response of Y or N. Entering Y starts a new

round of play. Entering N results in $validReply being set to true, thus ending the execution

of the script’s main while loop, effectively terminating the script.

Summary
This chapter showed you how to use functions and filters as a means of improving the overall

organization and structure of your Windows PowerShell scripts. You learned how functions

support the centralization of programming logic, reduce the overall size of scripts, and sup-

port code reuse. You learned how to define and execute functions. You learned how to pass

arguments and return results. You also learned how to insert functions in the object pipeline.

You learned how functions affect variable scope as well as how to access script-level variables

within functions. On top of all this, you learned how to develop filters as an alternative to

functions in order to more efficiently process large amounts of object pipeline data.

Now, before you move on and begin reading Chapter 8, I suggest you take a little extra time

to improve the PowerShell Hangman game by tackling the following list of challenges.

221Chapter 7 • Organizing Scripts Using Functions

C H A L L E N G E S

1. As it is currently written, the PowerShell Hangman game gives the player 12
guesses to figure out the game’s secret word. To make this game work more like
the traditional children’s game, change things so that the player is only allowed
to make six incorrect guesses. This way, correct guesses will not be counted
against the player. You may also want to associate each guess with a body part.
For example, the first miss would represent a head, the second miss would rep-
resent the body, the third and fourth misses might represent arms, and the fifth
and sixth misses would represent legs. You might even try displaying a text-
based graphic, similar to that of the game’s opening menu, at the end of each
turn. You could use this graphic to represent the number of misses (e.g., after
the first missed guess the graphic would show a head, after the second missed
guess it would show the head and body, and so on).

2. Currently, the PowerShell Hangman game only has 10 words to randomly choose
from. To make the game more challenging, consider modifying the game to sup-
port 20 or 30 different words.

3. As currently written, the game only has one custom function, which is responsible
for determining if the player’s guesses are correct. However, there are numerous
opportunities for further modularizing the script by reorganizing different parts
of it into functions. Review the code in the main processing section of the script
and look for opportunities to enhance its organization with functions.

4. The way the PowerShell Hangman game is currently written, it is possible for the
player to figure out what the game’s secret word is too late in the game for the
player to have enough guesses left to finish supplying each of the letters that
make up the secret word. Address this situation by giving the player the option
of typing in the entire word in place of her last guess.

5. As currently designed, the PowerShell Hangman game prevents the player from
entering two characters at a time, entering numeric or special characters, or
even just pressing the Enter key without keying in a guess. However, there is no
logic in place to prevent the player from accidentally entering the same valid
guess more than once. Consider modifying the script to prevent this from being
allowed.

This page intentionally left blank

Part

Chapter 8: Working with Files and
Folders

Chapter 9: Basic System
Administration

Chapter 10: Debugging PowerShell
Scripts

Advanced Topics

III

This page intentionally left blank

Working with Files
and Folders

8
C H A P T E RC H A P T E R

W
indows PowerShell provides you with access to cmdlets that provide you

with the ability to work with files and folders in many ways. This chapter

will teach you how to develop PowerShell scripts that can create, delete,

rename, copy, move, and delete files and folders. You will learn how to determine

if files and folders exist before you attempt to work with them. This chapter will

also show you how to write to files and read data from them. You will learn how

to work with different types of files, including plain text files, CSV files, and XML

files. You will also learn how to use regular expressions to specify matching file

and folder names and to use other cmdlets that allow you to control the format of

cmdlet output and to print the output provided by cmdlets or stored in text files.

Specifically, you will learn how to:

• Administer files and folders

• Write to and read from different types of files

• Use regular expressions to perform complex pattern matching

• Control the display of cmdlet output using formatting cmdlets

Project Preview: The PowerShell
Tic-Tac-Toe Game
This chapter’s game project is an implementation of the classic children’s Tic-Tac-Toe game.

This game requires two players and begins by displaying the screen shown in Figure 8.1.

The welcome screen also prompts players for permission to start a new game. Once that per-

mission is given, the screen shown in Figure 8.2 appears, prompting Player X to make a move.

Moves are made by entering the coordinates of an available game board square, as demon-

strated in Figure 8.3

Valid moves are A1–C3. Any other moves are rejected by the game. In addition, the game

rejects moves that have already been made, thus preventing one player from selecting a

square that was already selected earlier in the game.

Gameplay ends when one player manages to line up three squares in a row, as demonstrated

in Figure 8.4.

226 Windows PowerShell Programming for the Absolute Beginner

Figure 8.1

The welcome
screen for the

Tic-Tac-Toe game.

Figure 8.2

Players X is
always the first
player to make
a move in each

game.

The game also ends once every game board square has been selected without either player

managing to win. In this case a tie is declared, as demonstrated in Figure 8.5.

Players are prompted to play again at the end of each game. If the players elect to start a new

game, the game board is cleared and Player X is prompted to make a move. Otherwise, the

players are invited to return and play again and the game closes.

227Chapter 8 • Working with Files and Folders

Figure 8.3

Square C1 is
being specified as

Player X’s next
move.

Figure 8.4

Player O has won
the game.

Figure 8.5

The game has
ended in a tie.

228

Using the Power of Regular Expressions
Up to this point in the book, you have been validating data based on expected input, such

as Y or N, when prompting the user for permission to perform a given action. However, there

will be times when you are unable to strictly control the input provided to your PowerShell

scripts. Instead, you must be prepared to accept any of a host of different inputs. To accom-

modate this type of situation, you need to learn how to work with regular expressions. A

regular expression is a pattern used to describe matching data. Regular expressions have many

uses and benefits. For example, regular expressions can be used to facilitate string searches

within text documents. As this chapter’s game project demonstrates, regular expressions

are also an important tool that can be used to validate user input.

Matching Simple Patterns
Regular expressions are generally evaluated from left to right. Windows PowerShell imple-

ments regular expressions using the –match operator. Matches occur when a specified pat-

tern is found in a specified source string. Perhaps the simplest regular expression pattern is

one that defines a specific pattern made up of one or more characters, as demonstrated by

the following.

if (“Once upon a time” -match “ONCE”) {

Write-Host “Match!”

}

Here, the source string “Once upon a time” is searched to see if it contains a matching pat-

tern of “ONCE”. When executed, this example results in a match. By default, matches are not

case-sensitive. However, using the –cmatch operator, you can perform case-sensitive matches,

as demonstrated here.

if (“Once upon a time” -cmatch “ONCE”) {

Write-Host “We have a match!”

}

In this example, a match does not occur. Windows PowerShell also makes it easy for you to

perform negative pattern matching operations by supplying you with the –notmatch opera-

tor, which can be used as demonstrated by the following.

if (“Once upon a time” -notmatch “UPON”) {

Write-Host “We have a match!”

}

Windows PowerShell Programming for the Absolute Beginner

Here, a match occurs only if the pattern being searched for cannot be found in the specified

search string. Windows PowerShell also allows you to perform case-sensitive pattern match-

ing using the –cnotmatch operators, as demonstrated here:

if (“Once upon a time “ -cnotmatch “time”) {

Write-Host “We have a match!”

}

When executed, this example results in a match.

Matching Alternative Patterns
Windows PowerShell’s support for regular expressions also lets you set up pattern matches

that can look for different sets of possible matches. To specify this type of pattern match,

you use the | character in order to separate each possible matching string.

if (“mar” -match “war|mar|jar”) {

Write-Host “Match!”

}

In this example, a pattern has been defined that looks for any of three matching patterns.

If any one of these patterns is found, the match is successful. To be more efficient, you could

rewrite the previous example, as demonstrated next.

if (“mar” -match “(wa|ma|ja)r”) {

Write-Host “Match!”

}

In this more efficient pattern, the unique portions of each possible pattern match have been

grouped together and enclosed within parentheses and the shared portion of the pattern

match has been placed outside of the parentheses.

Working with Regular Expression Characters
Every character included as part of a regular expression will match itself. However, Windows

PowerShell supports a collection of regular expression characters, also known as metachar-

acters, that are an exception to this rule. A metacharacter is a character that alters the man-

ner in which a pattern match is evaluated. For example, consider the following example.

if (“The winner of this year’s award is Mrs. Ford!” -match “Mr.”) {

Write-Host “Match!”

}

229Chapter 8 • Working with Files and Folders

230

In this example, a regular expression has been set up to match against the characters Mr

followed by an optional character, as represented by the . character. The . character is a

metacharacter that is used to define a pattern that matches any one character. As a result,

Mr., Mrs., and even Mrt will all match the “Mr.” pattern. If you really wanted to match the

period character as a period and not as a metacharacter, then you would need to precede it

with a \, as demonstrated below.

if (“The winner of this year’s award is Mrs. Ford!” -match “Mr\.”) {

Write-Host “Match!”

}

The . and \ characters used in the two previous examples are just two of a number of

metacharacters supported by Windows PowerShell. Table 8.1 provides a list of additional

regular expression characters.

Windows PowerShell Programming for the Absolute Beginner

Character Description Example

. Matches a single character “Molly” –match “M….y”

[value] Matches at least one character “Molly” –match “M[io]lly”
specified inside brackets

[range] Matches at least one character specified “Randy” –match “[R-T]andy”
within a range

[^] Matches any character except those “Randy” –match “[^RC]andy”
specified within brackets

^ Matches characters located at the “William” –match “^Wil”
beginning of a string

$ Matches characters located at the “William” –match “iam$”
end of a string

* Matches zero or more occurrences “Daddy” –match “d*”
of the preceding character

? Matches zero or one occurrence of “Daddy” –match “d?”
the preceding character

\ Matches the character following the “Big$” –match “Big\$”
escape (\) character

TA B L E 8 .1 R E G U L A R E X P R E S S I O N C H A R A C T E R S

(M E T A C H A R A C T E R S)

Working with Quantifiers
Using regular expressions, you can also set up pattern matches that match based on the

number of repeating matches. This is accomplished using the regular expression quantifiers

listed in Table 8.2.

For example, the following statement demonstrates how to set up a regular expression that

matches on one or more occurrences using the + regular expression quantifier character.

if (“The winner of this year’s award is Mrs. Ford!” -match “win+er”) {

Write-Host “Match!”

}

Here, a match occurs if the string being searched contains a substring that matches the pat-

tern of “win+er”. This pattern looks for the letter wi followed by one or more instances of the

letter n, followed by the letters er. Therefore, this pattern will match up against the word

winner.

Matching Patterns Based on Ranges
Regular expressions also provide you with the ability to develop a pattern that looks for a

specific type of data or that searches for a range of characters. This can be accomplished by

using the character class patterns outlined in Table 8.3.

231Chapter 8 • Working with Files and Folders

Character Description Example

* Must match zero or more times “ss” –match “\w*”

+ Must match one or more times “123123123” –match “123+”

? Must match no more than one time “ss” –match “\w?”

{n} Must match n times “ss” –match “\w{2}”

{n,} Must match at least n matches “ss” –match “\w{2,}”

{n,m} Must match at least n, but not more than m times “ss” –match “\w{2,3}”

TA B L E 8 . 2 R E G U L A R E X P R E S S I O N Q U A N T I F I E R S

232

Note that to work with character class patterns, you must enclose them inside a pair of

matching brackets ([]), as demonstrated next.

if (“March 13th” -match “[0-9]”) {

Write-Host “Match!”

}

Here, a regular expression has been set up to look for the occurrence of a numeric match

between 0 and 9. When executed, this example finds a match. However, the following exam-

ple would not find a match.

if (“March Thirteenth” -match “[0-9]”) {

Write-Host “Match!”

}

Character classes are so commonly used in developing regular expressions that a series of short-

cuts, listed in Table 8.4, have been developed to make them more convenient to work with.

Windows PowerShell Programming for the Absolute Beginner

Pattern Description

[abc] Matches any of the specified lowercase characters

[abcdefghijklmnopqrstuvwxyz] Matches any lowercase letter in the alphabet

[a – z] Shorthand for specifying a match on any lowercase letter

[A – Z] Shorthand for specifying a match on any uppercase letter

[0123456789] Matches a number between 0–9.

[0 – 9] Shorthand specifying a match between 0–9

TA B L E 8 . 3 C H A R A C T E R C L A S S P A T T E R N S

Shortcut Description

\d Equivalent to [0 – 9]

\w Equivalent to [0-9A-Za-z_]

\s Equivalent to [\t\f\r\n\v]

\D Matches any character besides [0 – 9]

\W Matches any character besides [0-9A-Za-z_]

\S matches any character besides [\t\f\r\n\v]

TA B L E 8 . 4 C H A R A C T E R C L A S S S H O RT C U T S

For example, the following if statement sets up a regular expression that results in a match

as long as no numeric characters are found in the string being searched.

if (“I am forty two.” -match “\D”) {

Write-Host “Match!”

}

Likewise, the following example sets up a regular expression to search a string to make sure

that it contains numeric characters.

if (“I am 42.” -match “\d”) {

Write-Host “Match!”

}

This review of Windows PowerShell’s support for regular expressions has been
relatively brief. An in-depth discussion about regular expressions is beyond the
scope of this book. To learn more, read Mastering Regular Expressions, Second
Edition (ISBN: 0596002890). You can also enter the following command at the
PowerShell command prompt.

Get-Help about_regular_expressions

Administering Files and Folders
Windows PowerShell provides you with many ways of administering files and folders on

your computer. It provides you with the ability to create, delete, rename, copy, move, or

delete files and folders.

If you are going to follow along with the examples provided in the sections that
follow, you will need to make sure that you have similarly named files and fold-
ers on your computer for things to work correctly.

Verifying File and Folder Existence
As was just stated, Windows PowerShell provides you with the tools needed to administer

files and folders. However, before you attempt to administer a file or folder, it is a good idea

to first check and make sure that the file or folder exists. After all, files and folders can dis-

appear for any number of reasons. For example, someone else using the computer might

delete them or rename them. To see if a file exists, you use the Test-Path cmdlet, as demon-

strated by the following.

TRAP

HINT

233Chapter 8 • Working with Files and Folders

234

$fileFound = Test-Path C:\MyScripts\Hangman.ps1

if ($fileFound -eq “True”) {

Write-Host “File found.”

}

In this example, a variable named $fileFound is set to True or False based on whether the

Test-Path cmdlet is able to find a file named hangman.ps1 in the C:\MyScripts folder. The

Test-Path cmdlet can also be used to determine whether a folder exists, as demonstrated here.

$fileFound = Test-Path C:\MyScripts

if ($fileFound -eq “True”) {

Write-Host “Folder found.”

}

In this example, MyScripts is a folder residing at the root of the computer’s C: drive. Once

you have used the Test-Path cmdlet to ensure that the file or folder you want to work with

exists, you can perform a host of administrative operations on the file or folder, as demon-

strated in the sections that follow.

Retrieving File and Folder Information
As the following example shows, you can use the Get-Item cmdlet to retrieve information

about a given file or folder. In this example, the Mode, LastWriteTime, Length, and Name prop-

erties of the hangmang.ps1 file are displayed.

PS C:\MyScripts> Get-Item Hangman.ps1

Directory: Microsoft.PowerShell.Core\FileSystem::C:\MyScripts

Mode LastWriteTime Length Name

—— ——————- ——— ——

-a—- 10/15/2006 2:32 PM 10176 Hangman.ps1

Using the Get-Item cmdlet, you can easily create a script that retrieves a specific property

value for a file or folder, as demonstrated here.

$fileFound = Test-Path C:\MyScripts\Hangman.ps1

if ($fileFound -eq “True”) {

$lastWritten = $(Get-Item C:\MyScripts\hangman.ps1).LastWriteTime

}

Windows PowerShell Programming for the Absolute Beginner

Here, the Test-Path cmdlet is used to make sure that the Hangman.ps1 file exists. If it does,

the Get-Item cmdlet is then passed C:\MyScripts\hangman.ps1 as an argument. Note that the

Get-Item cmdlet and its argument are enclosed within parentheses and preceded by a $ char-

acter in order to establish an object reference. Once the reference is set up, related object

properties can then be accessed using standard dot notation. When executed, this example

will generate output similar to that shown below, assuming that the specified file exists.

Sunday, January 21, 2007 2:32:14 PM

Copying and Moving Files and Folders
Windows PowerShell also provides you with the ability to copy and moves files and folders.

This is accomplished using the Copy-Item and Move-Item cmdlets. For example, the following

example demonstrates how to copy a file from one folder to another.

Copy-Item C:\System.log C:\Temp

In this example, a file named System.log is copied from the root of the C: drive to the

C:\Temp folder. If necessary, you can use wildcard characters to copy multiple files from one

folder to another, as demonstrated here.

Copy-Item C:*.log C:\Temp

Here, any .log files found on the root of C: are copied to C:\Temp.

You can also use the Copy-Item cmdlet to copy one folder into another folder, as demon-

strated here.

Copy-Item C:\MyScripts C:\Temp

When executed, this statement makes a copy of the C:\MyScripts folder and places it in the

C:\Temp folder. However, none of the contents of C:\MyScripts are copied, just a copy of

the folder itself. You can modify this example by passing the –recurse parameter to the

Copy-Item cmdlet in order to instruct Windows PowerShell to recursively copy a folder and

all its contents, including any subfolders, into another folder, as shown here.

Copy-Item C:\MyScripts C:\Temp –recurse

Using the Move-Item cmdlet, Windows PowerShell also lets you move files and folders. For

example, the following demonstrates how to copy a file from one folder to another.

Move-Item C:\System.log C:\Temp

Use wildcard characters to move multiple files from one folder to another, as shown here.

Move-Item C:*.log C:\Temp

235Chapter 8 • Working with Files and Folders

236

By default, the Move-Item cmdlet will not override and replace any existing files in the des-

tination folder. However, by adding the –force parameter, you can instruct the Move-Item

cmdlet to overwrite and replace existing filenames.

Move-Item C:*.log C:\Temp -force

Deleting Files and Folders
Windows PowerShell provides you with the ability to delete files and folders by using the

Remove-Item cmdlet. For example, the following statement can be used to delete a file named

Report.txt located in the C:\Temp folder.

Remove-Item C:\Temp\Report.txt

Using wildcard characters, you can remove groups of files from a folder, as demonstrated here.

Remove-Item C:\Temp*.txt

You can use the Remove-Item cmdlet to delete both files and folders. For example, the fol-

lowing statement instructs PowerShell to delete all the files and folders stored in a folder

named C:\Temp\HP_WebRelease.

Remove-Item C:\Temp\HP_WebRelease*

In response to this statement, PowerShell will display output similar to that shown next,

prompting you for permission to delete all of the folders found inside C:\Temp\HP_WebRelease.

The item at C:\Temp\HP_WebRelease\chs has children and the -recurse parameter

was not specified. If you continue, all children will be removed with the item.

Are you sure you want to continue?

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help

(default is “Y”):

If you want, you can reformulate the previous command by passing any of the following

parameters to the Remove-Item cmdlet.

• –recurse. Bypasses the display of the previous prompt message, instructing the

Remove-Item cmdlet to recursively remove all contents.

• –exclude. Allows you to include a comma-separated list of files to exclude when the

Remove-Item cmdlet executes.

• –include. Allows you to include a comma-separated list of files to include when the

Remove-Item cmdlet executes.

• –whatif. Instructs the Remove-Item cmdlet to display a list showing the files and

folder that it would have deleted had the –whatif parameter not been specified.

Windows PowerShell Programming for the Absolute Beginner

Renaming Files and Folders
Windows PowerShell provides you with the ability to programmatically rename files using

the Rename-Item cmdlet as demonstrated here.

Rename-Item C:\MyScripts\Test.ps1 Test1.ps1

Here, two arguments are passed to the Rename-Item. The first argument is the name and path

of the file to be renamed, and the second argument is the new name that is to be assigned.

You may also use the Rename-Item cmdlet to rename a folder, as demonstrated here.

Rename-Item C:\MyFolder TestFolder

Searching Files
In addition to looking for, copying, moving, renaming, and deleting files and folders, Windows

PowerShell also provides you with the ability to search inside text files and search their

contents. This is accomplished using the Get-Content and the Select-String cmdlets. For

example, let’s say you had a log file named System.log that contained the following text.

01/27/2007 08:00:01 System backup started

01/27/2007 09:16:33 System backup completed

01/28/2007 08:00:01 System backup started

01/28/2007 09:13:13 System backup completed

01/29/2007 08:00:01 System backup started

01/29/2007 08:00:05 Error code 995 - Unable to locate backup media

01/30/2007 08:00:01 System backup started

01/30/2007 09:22:11 System backup completed

The Get-Content cmdlet provides you with the ability to read lines of text from a text file.

The Select-String cmdlet gives you the ability to search a text string to see if it contains a

substring. For example, you could search the log file shown above and look for any errors

that may have occurred, as demonstrated here.

Get-Content C:\Temp\System.log | Select-String “Error”

Here, the Get-Content cmdlet is executed and passed C:\Temp\System.log as an argument.

Next, each line in the log file is passed down the object pipeline and processed by the

Select-String cmdlet, which has been told to look for the text Error inside each line. Any

lines of text that include this text are then displayed. When executed, this command will

generate the following output.

01/29/2007 08:00:05 Error code 995 - Unable to locate backup media

237Chapter 8 • Working with Files and Folders

238

You can also use regular expressions to define a search pattern that you want to look for

when searching text files and then display a text message indicating when a match occurs.

For example, the following statements use the Get-Content cmdlet to assign the contents of

a text file to an array variable named $records. Next, an if statement has been set up that

uses the –match operator in order to define a regular expression that looks for occurrences

of the words error, alert, and critical in any of the lines stored inside $records.

$records = Get-Content C:\Temp\System.log

if ($records -match “(error|alert|critical)”) {

Write-Host “Match!”

}

Reading from and Writing to Files
In addition to providing you with the tools required to administer files and folders, Win-

dows PowerShell also provides you with access to a number of cmdlets that you can use to

create files and folders as well as read from and write to different types of files, including

text, CVS, and XML files.

Creating Files and Folders
Windows PowerShell provides programmers with many ways to create new files. One way to

create a new text file and to write data to it is to use the > redirection operator in order to

write object pipeline data to text files.

Get-ChildItem > C:\Temp\DirectoryList.txt

When executed, this statement takes the output of the Get-ChildItem cmdlet and redirects

it to C:\Temp\DirectoryList.txt. As a result, if you open the Directory.txt file, you’ll see that it

contains data similar to the following output.

Directory: Microsoft.PowerShell.Core\FileSystem::C:\MyScripts

Mode LastWriteTime Length Name

—— ——————- ——— ——

-a—- 9/26/2006 9:14 PM 4661 FortuneTeller.ps1

-a—- 10/9/2006 12:11 AM 4734 GuessMyNumber.ps1

-a—- 10/15/2006 2:32 PM 10176 Hangman.ps1

Windows PowerShell Programming for the Absolute Beginner

If the file being written to already exists, its contents are replaced. To append to
the end of a file, use the >> pipe operator as demonstrated below.

Get-ChildItem >> C:\Temp\DirectoryList.txt

Alternatively, you can create a new file using the New-Item cmdlet. For example, the follow-

ing statement will create a new empty file named TextFile.txt in the C:\Temp folder.

New-Item C:\Temp\TestFile.txt -type file

As you can see, the first argument passed to the cmdlet is the name and path of the

resources to be created. The second argument passed to the cmdlet is the type of resource

to create (e.g., a file). You can use the New-Item cmdlet to create a new folder just as easily as

a new file, as demonstrated below.

New-Item C:\Temp\MyNewFolder -type directory

In this example a new folder named MyNewFolder is created inside the C:\Temp folder. Also

note that the second argument passed to the cmdlet specified the keyword directory and

not folder. Both terms are, of course, synonymous but PowerShell requires you to specify

directory when creating new folders.

If the file or folder you are attempting to create already exists, you will get an error message.

New-Item : The file ‘C:\Temp\TestFile.txt’ already exists.

At C:\MyScripts\xxx.ps1:3 char:9

+ New-item <<<< C:\Temp\TestFile.txt -type file

If you want, you can add the –force parameter to replace the file or folder with an empty

file or folder, as demonstrated here.

New-Item C:\Temp\TestFile.txt -type file -force

Writing to Text Files
Windows PowerShell provides you with a number of additional ways to create files and write

output to them. For example, you have already seen how to create and write to new text files

by redirecting object pipeline data with the > operator. Windows PowerShell also lets you

write to text files using the Set-Content, Out-File, and Add-Content cmdlets.

Writing Text
Using the Set-Content cmdlet, you can write a string to a text file, as demonstrated here.

Set-Content C:\Temp\Temp.txt “Once upon a time...”

TRICK

239Chapter 8 • Working with Files and Folders

240

Here, the first argument passed to Set-Content is the name and path of the file to be created.

The second argument is the string to be written to the text file. If a file of the same name

already exists, the Set-Content cmdlet will automatically replace its content with the speci-

fied string.

You can also use the Out-File cmdlet to send data from the object pipeline directly to a file

without seeing anything displayed in the Windows command console. For example, the fol-

lowing statement will redirect the output of the Get-ChildItem cmdlet to a file named

Temp.txt in C:\Temp.

Get-Childitem | Out-File C:\Temp\Temp.txt

Like the Set-Content cmdlet, the Out-File cmdlet overwrites the contents of any like-named

files.

Appending Text
If you want to add to an existing file when writing to it, as opposed to replacing its contents,

you can use the Add-Content cmdlet to append data to the end of a file, as demonstrated by

the following example.

Set-Content C:\Temp\Temp.txt “Once upon a time...”

Add-Content C:\Temp\Temp.txt “And they lived happily ever after.”

Add-Content C:\Temp\Temp.txt “”

Add-Content C:\Temp\Temp.txt “`tThe end”

Here, a new file is created and written to using the Set-Content cmdlet. Next, the Add-Content

cmdlet is used to write additional text to the file.

Reformatting Cmdlet Output
As you have just learned, Windows PowerShell provides you with many different ways of cre-

ating and writing data to text files. You have also seen examples of how to write pipeline

object data directly into text files. In these examples, data was written using whatever for-

mat the last cmdlet applied to it. However, Windows PowerShell makes it easy to customize

cmdlet output using the Format-List and Format-Table cmdlets.

The Format-List Cmdlet
The Format-List cmdlet processes object pipeline data and reformats it into a vertical list.

Using the cmdlet’s –property parameter, you can control which object properties are dis-

played in order to create custom reports and output.

Windows PowerShell Programming for the Absolute Beginner

For example, suppose you wanted to develop a PowerShell script that generated a report that

showed a listing of all the files stored in the current working directory. This could be easily

accomplished by adding the following statements to the script.

Get-ChildItem > C:\Temp.txt

When executed, this script would create a text file named Tempt.txt in the root folder on

the computer’s C: drive.

Directory: Microsoft.PowerShell.Core\FileSystem::C:\MyScripts

Mode LastWriteTime Length Name

—— ——————- ——— ——

-a—- 9/26/2006 9:14 PM 4661 FortuneTeller.ps1

-a—- 10/9/2006 12:11 AM 4734 GuessMyNumber.ps1

-a—- 10/15/2006 2:32 PM 10176 Hangman.ps1

-a—- 9/10/2006 1:42 PM 1077 Workpaper.txt

-a—- 9/26/2006 12:56 PM 831 Report.log

By passing the output of the Get-ChildItem cmdlet to the Select-String cmdlet, you can filter

out all the files in the current working directory whose filenames do not include the string

ps1. You might then pass the resulting output to the Format-List cmdlet, as shown here.

Get-ChildItem | Select-String PS1 | Format-List > C:\Temp.txt

When executed, this statement saves output similar to that shown here in a file named

Temp.txt.

IgnoreCase : True

LineNumber : 3

Line : # Script Name: FortuneTeller.ps1 (PowerShell Fortune Teller)

Filename : FortuneTeller.ps1

Path : C:\MyScripts\FortuneTeller.ps1

Pattern : PS1

IgnoreCase : True

LineNumber : 3

Line : # Script Name: GuessMyNumber.ps1 (The Guess My Number Game)

Filename : GuessMyNumber.ps1

Path : C:\MyScripts\GuessMyNumber.ps1

Pattern : PS1

241Chapter 8 • Working with Files and Folders

242

IgnoreCase : True

LineNumber : 3

Line : # Script Name: Hangman.ps1 (The PowerShell Hangman Game)

Filename : Hangman.ps1

Path : C:\MyScripts\Hangman.ps1

Pattern : PS1

The output shown here was generated using a default format generated by the Format-List

cmdlet. It you prefer, you can exercise detailed control over the properties that are reported,

as demonstrated here.

Get-ChildItem | Select-String PS1 | Format-List -Property Filename, Path >

C:\Temp.txt

Here, the –property parameter has been specified and two arguments included. When exe-

cuted, this statement generates results similar to that shown here.

Filename : FortuneTeller.ps1

Path : C:\MyScripts\FortuneTeller.ps1

Filename : GuessMyNumber.ps1

Path : C:\MyScripts\GuessMyNumber.ps1

Filename : Hangman.ps1

Path : C:\MyScripts\Hangman.ps1

The Format-Table Cmdlet
The Format-Table cmdlet is very similar to the Format-List cmdlet, except that it formats

output in a horizontal table as opposed to a vertical list. For example, you might use the

Format-Table cmdlet as shown next to formulate a statement that displays a tabular view of

the contents of the current working directory, which is then saved as a report named Temp.txt.

Get-ChildItem | Select-String PS1 | Format-Table > C:\temp\Temp.txt

When executed, this statement will generate results similar to this:

IgnoreCase LineNumber Line Filename Path Pattern

————— ————— —— ———— —— ———-

True 3 # Script ... FortuneTe... C:\MyScri... PS1

True 3 # Script ... GuessMyNu... C:\MyScri... PS1

True 3 # Script ... Hangman.ps1 C:\MyScri... PS1

Windows PowerShell Programming for the Absolute Beginner

Like the Format-List cmdlet, the Format-Table cmdlet lets you override its default format by

specifying the data properties you want, as demonstrated here.

Get-ChildItem | Select-String PS1 | Format-Table Filename, Path >

C:\temp\Temp.txt

When executed, this statement will generate a report file containing output similar to that

show here.

Filename Path

———— ——

FortuneTeller.ps1 C:\MyScripts\FortuneTeller.ps1

GuessMyNumber.ps1 C:\MyScripts\GuessMyNumber.ps1

Hangman.ps1 C:\MyScripts\Hangman.ps1

As another example of how to work with the Format-Table cmdlet, let’s write a statement

that lists all of the processes running on the computer that currently have more than 600

open handles. To begin, let’s format a statement that lists all the active processes, sorts

them, and then displays only those with more than 600 open handles, as shown here.

Get-Process | Sort-Object | Where-Object {$_.Handles -gt 300} > C:\temp\Temp.txt

When executed, this statement will produce a report containing output similar to that

shown here.

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

———- ——— ——- ——- ——- ——— — —————-

4393 6 6080 432 46 1,256.52 2844 CFD

657 20 13888 17500 115 817.45 2484 explorer

643 17 24664 1240 231 60.38 3388 mim

1675 60 20372 17552 153 174.52 900 svchost

Now that we have the set of results we are looking for, let’s reformat the output using the

Format-Table cmdlet’s –groupby parameter to display a series of tables where processes are

grouped by process names, as shown here.

Get-Process | Sort-Object | Where-Object {$_.Handles -gt 300} | Format-Table

-groupby Processname > C:\temp\Temp.txt

Make sure that when you run this example and other examples like it at the
Windows PowerShell command prompt, you do so by keying it in as a single
statement.

HINT

243Chapter 8 • Working with Files and Folders

244

When executed, this statement generates a report named Temp.txt that contains results sim-

ilar to those shown here.

ProcessName: CFD

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

———- ——— ——- ——- ——- ——— — —————-

4440 6 6096 7628 47 1,257.27 2844 CFD

ProcessName: powershell

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

———- ——— ——- ——- ——- ——— — —————-

606 11 22568 31264 140 3.47 3548 powershell

638 12 50648 50676 168 20.33 3504 powershell

ProcessName: svchost

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

———- ——— ——- ——- ——- ——— — —————-

637 14 1924 1412 37 7.91 832 svchost

1673 60 20356 17540 152 174.52 900 svchost

Since multiple instances of some processes may be running at the same time, the –groupby

parameter groups any like-named processes with more than 600 open handles together

when formatting and displaying its output.

The Format-List and Format-Table cmdlets provide detailed control over the
display of cmdlet output. To learn more about these two cmdlets, type
Get-Help Format-List and Get-Help Format-Table at the Windows PowerShell
command prompt.

Reading from Text Files
Windows PowerShell can just as easily read from a text file as it can write to it. Windows

PowerShell provides you with the ability to read from a text file using the Get-Content,

cmdlet, as demonstrated here.

Get-Content C:\Temp\Temp.txt

HINT

Windows PowerShell Programming for the Absolute Beginner

As you can see, the only argument passed to the Get-Content cmdlet is the name and path

of the text file to be read. When executed, this statement will display the contents of what-

ever has been stored in the specified text file. When executed, the Get-Content cmdlet auto-

matically creates an array into which is stored each of the lines in the specified text file,

making it possible, for example, for you to then process every line of text using a loop.

Erasing File Contents
If you want, you can programmatically erase the contents of a file without removing the file

from the computer using the Clear-Content cmdlet. To use this cmdlet, you simply specify

the name and path of the files to be erased as an argument as demonstrated here.

Clear-Content C:\Temp\Temp.txt

You can use the Clear-Content cmdlet to erase more than just the content of
text files. You can use it to clear out other types of files such as Microsoft Word
documents.

Saving Data Output as HTML
Windows PowerShell is capable of saving output in many different file formats, including

HTML. The advantage of HTML is that it can often be used to more effectively display infor-

mation, especially when used on a web server to communicate with large groups of people. To

save file output as an HTML file, you use the ConvertTo-Html cmdlet, as demonstrated below.

Get-Service | Where-Object { $_.status -eq “running” } |ConvertTo-HTML Name,

DisplayName, Status | Set-Content C:\Temp\Text.html

Here, the Get-Service cmdlet is used to generate a list of all processes running on the com-

puter. Next, the Where-Object cmdlet is used to filter out all non-running services. The

ConvertTo-Html cmdlet is then used to format the resulting output into an HTML file. Note

that only the Name, DisplayName, and Status properties are outputted. Finally, the resulting

HTML is written as a file named Text.html, as demonstrated in Figure 8.6.

Saving Data as an XML File
Windows PowerShell also provides you with the ability to save pipeline object data in the

form of an XML file. XML stands for Extensible Markup Language. Its purpose is to facilitate

the definition, storage, and transmission of data between applications. To generate an XML

file, you use the Export-Clixml cmdlet, as demonstrated here:

Get-ChildItem | Export-Clixml C:\Temp\Test.xml

TRICK

245Chapter 8 • Working with Files and Folders

246

Here, the Get-ChildItem cmdlet is used to generate a list of files stored in the current working

directory and then the Export-Clixml cmdlet is used to save the resulting output in an XML

file. When executed, this statement will generate an XML file whose contents are similar to

those shown in Figure 8.7.

Windows PowerShell Programming for the Absolute Beginner

Figure 8.6

Displaying object
pipeline data as

an HTML file.

Figure 8.7

An example of
the output that is
produced when

an XML file is
generated.

Reading Data from an XML File
Windows PowerShell also provides you with a cmdlet that lets you retrieve XML data, thus

letting you use it again as input in another PowerShell script. To open and read an XML file,

you need to use the Import-Clixml cmdlet, as demonstrated here.

$xmlFile = Import-Clixml C:\Temp\Test.xml

$xmlFile

In this example, the first statement uses the Import-Clixml cmdlet to retrieve the Test.xml

file and store a copy of its content in $xmlFile. The second statement displays the contents

stored in $xmlFile, which should look like this:

Directory: Microsoft.PowerShell.Core\FileSystem::C:\MyScripts

Mode LastWriteTime Length Name

—— ——————- ——— ——

9/26/2006 9:14 PM 4661 FortuneTeller.ps1

10/9/2006 12:11 AM 4734 GuessMyNumber.ps1

10/15/2006 2:32 PM 10176 Hangman.ps1

Saving Data in a Comma-Separated Value File
One additional file format that Windows PowerShell can write to and read from is CSV.

CSV stands for comma-separated values. CSV is a file format that is used to store comma-

separated data as records separated by newlines and is commonly used by applications such

as Microsoft Excel as a means of storing data in a format that can easily be moved between

different applications.

To save pipeline object data in a CSV file, you use the Export-Csv cmdlet, as demonstrated here.

Get-ChildItem | Export-Csv C:\Temp\Test.csv

When executed, this statement will create a file containing output similar to that shown here,

readying it for use by other applications, or for use as input into another PowerShell script.

#TYPE System.IO.FileInfo

PSPath,PSParentPath,PSChildName,PSDrive,PSProvider,PSIsContainer,Mode,Name,Length,Dir

ectoryName,Directory,IsReadOnly,Exists,FullName,Extension,CreationTime,CreationTimeUt

c,LastAccessTime,LastAccessTimeUtc,LastWriteTime,LastWriteTimeUtc,Attributes

Microsoft.PowerShell.Core\FileSystem::C:\MyScripts\FortuneTeller.ps1,Microsoft.PowerS

hell.Core\FileSystem::C:\MyScripts,FortuneTeller.ps1,C,Microsoft.PowerShell.Core\File

System,False,-a—-

247Chapter 8 • Working with Files and Folders

248

,FortuneTeller.ps1,4661,C:\MyScripts,C:\MyScripts,False,True,C:\MyScripts\FortuneTell

er.ps1,.ps1,”9/24/2006 3:12:14 PM”,”9/24/2006 7:12:14 PM”,”10/22/2006 8:42:36

PM”,”10/23/2006 12:42:36 AM”,”9/26/2006 9:14:10 PM”,”9/27/2006 1:14:10 AM”,Archive

Microsoft.PowerShell.Core\FileSystem::C:\MyScripts\GuessMyNumber.ps1,Microsoft.PowerS

hell.Core\FileSystem::C:\MyScripts,GuessMyNumber.ps1,C,Microsoft.PowerShell.Core\File

System,False,-a—-

,GuessMyNumber.ps1,4734,C:\MyScripts,C:\MyScripts,False,True,C:\MyScripts\GuessMyNumb

er.ps1,.ps1,”10/8/2006 5:37:04 PM”,”10/8/2006 9:37:04 PM”,”10/22/2006 8:42:36

PM”,”10/23/2006 12:42:36 AM”,”10/9/2006 12:11:47 AM”,”10/9/2006 4:11:47 AM”,Archive

Microsoft.PowerShell.Core\FileSystem::C:\MyScripts\Hangman.ps1,Microsoft.PowerShell.C

ore\FileSystem::C:\MyScripts,Hangman.ps1,C,Microsoft.PowerShell.Core\FileSystem,False

,-a—-

,Hangman.ps1,10176,C:\MyScripts,C:\MyScripts,False,True,C:\MyScripts\Hangman.ps1,.ps1

,”10/10/2006 1:30:50 PM”,”10/10/2006 5:30:50 PM”,”10/22/2006 8:42:36 PM”,”10/23/2006

12:42:36 AM”,”10/15/2006 2:32:14 PM”,”10/15/2006 6:32:14 PM”,Archive

Reading Data from a Comma-Separated Value File
To read a CSV file into a PowerShell script, you need to use the Import-Csv cmdlet. As demon-

strated next, this cmdlet takes one argument: the name and path of the CSV file to be

imported.

$cvsFile = Import-Csv C:\Temp\Test.csv

$cvsFile

Here, the content of the previously saved CSV files has been imported back into a variable

named $csvFile and then displayed, producing output similar to that shown here.

PSPath : Microsoft.PowerShell.Core\FileSystem::C:\MyScripts\FortuneT

eller.ps1

PSParentPath : Microsoft.PowerShell.Core\FileSystem::C:\MyScripts

PSChildName : FortuneTeller.ps1

PSDrive : C

PSProvider : Microsoft.PowerShell.Core\FileSystem

PSIsContainer : False

Mode : -a—-

Name : FortuneTeller.ps1

Length : 4661

DirectoryName : C:\MyScripts

Directory : C:\MyScripts

IsReadOnly : False

Windows PowerShell Programming for the Absolute Beginner

Exists : True

FullName : C:\MyScripts\FortuneTeller.ps1

Extension : .ps1

CreationTime : 9/24/2006 3:12:14 PM

CreationTimeUtc : 9/24/2006 7:12:14 PM

LastAccessTime : 10/22/2006 8:42:36 PM

LastAccessTimeUtc : 10/23/2006 12:42:36 AM

LastWriteTime : 9/26/2006 9:14:10 PM

LastWriteTimeUtc : 9/27/2006 1:14:10 AM

Attributes : Archive

.

.

.

Sending Output to the Printer
Before we switch tracks and begin working on the chapter’s game project, let’s learn how to

perform the last file operation: printing. Using the Out-Printer cmdlet, you can send data

to a printer. When used without any arguments, the Out-Printer cmdlet submits print out-

put to the computer’s default printer, as demonstrated here.

“This is a printer test.” | Out-Printer

Here, a text string has been piped to the Out-Printer cmdlet for printing. Similarly, you can

send a text file to the default printer, as demonstrated here.

Get-Content C:\a.txt | Out-Printer

In fact, you can redirect any pipeline object data to the printer, as shown here.

get-location | Format-List | Out-Printer

When executed, this statement will print out a document containing the following output.

Drive : C

Provider : Microsoft.PowerShell.Core\FileSystem

ProviderPath : C:\

Path : C:\

Finally, you can also direct the Out-Printer cmdlet to submit print output to a specific

printer by passing the printer’s name as an argument.

Get-Location | Format-List | Out-Printer “hp_deskjet”

249Chapter 8 • Working with Files and Folders

250

Here, information about the current working directory is printed to a printer named hp_deskjet.

Back to the PowerShell Tic-Tac-Toe Game
Okay, it’s time to turn your attention back to the chapter’s main game project, the Power-

Shell Tic-Tac-Toe game. The development of this game will demonstrate how to create a

script that can interact with the player by displaying messages, retrieving command-line

input, and applying programming logic to control the operation of the script.

Designing the Game
This game requires two players, Player X and Player O. Player X always starts off each game.

The game validates player moves and keeps track of whose turn it is. The game displays a

text-based graphic view of the Tic-Tac-Toe game board, which it updates after each player’s

turn. The game ends when one player lines up three board squares in a row (horizontally,

vertically, or diagonally), or when all game board squares have been selected without either

player being able to pull out a win.

The overall logical flow of the PowerShell script is fairly simple. To set it up, we will com-

plete its development in 17 steps, as outlined here.

1. Create a new script file and add opening comment statements.

2. Define and initialize script variables.

3. Develop the Clear-Board function.

4. Develop the Get-Permission function.

5. Develop the Display-Board function.

6. Develop the Validate-Move function.

7. Develop the Check-Results function.

8. Develop the Display-Results function.

9. Ready the game for play.

10. Create a loop to control overall execution of the script.

11. Create a loop to control individual games.

12. Collect player moves.

13. Validate player moves.

14. Look for a winner.

15. Look for a tie.

16. Switch player turns.

17. Prompt players to start a new game.

Windows PowerShell Programming for the Absolute Beginner

Creating a New Script
The first step in the creation of the Tic-Tac-Toe game is to create a new PowerShell script file

named TicTactoe.ps1 and apply your PowerShell template to it.

#

Script Name: TicTacToe.ps1 (The Tic-Tac-Toe Game)

Version: 1.0

Author: Jerry Lee Ford, Jr.

Date: January 1, 2007

Description: This PowerShell script is a two player implementation of the

popular Tic-Tac-Toe game

Initialization Section

Functions and Filters Section

Main Processing Section

Defining and Initializing Script Variables
Next, you need to define and initialize variables used throughout the script. This is accom-

plished by adding the following statements to the initialization section of the script file.

Note that the purpose of each variable is documented by comments that have been added

to the script statements.

#Define variables used in this script

$startGame = “False” #Controls when the game terminates

$playGame = “True” #Controls the play of an individual round of play

$player = “X” #Specifies the current player’s turn

$winner = “” #Specifies the winner

$moves = 0 #Counts the number of moves made

$move = “” #Stores the current player’s move

$tie = “False” #Specifies when a tie occurs

251Chapter 8 • Working with Files and Folders

252

#Variables representing game board squares

$A1 = “1”

$A2 = “1”

$A3 = “1”

$B1 = “1”

$B2 = “ “

$B3 = “ “

$C1 = “ “

$C2 = “ “

$C3 = “ “

Preparing the Clear-Board Function
Now it is time to begin developing custom functions used by the script to perform specific

tasks. The functions should be placed in the functions and filters section of the script file.

The code of the first function, Clear-Board, is shown below.

#This function resets variables representing variable board squares

function Clear-Board {

$script:A1 = “ “

$script:A2 = “ “

$script:A3 = “ “

$script:B1 = “ “

$script:B2 = “ “

$script:B3 = “ “

$script:C1 = “ “

$script:C2 = “ “

$script:C3 = “ “

}

When executed, this function resets the variables representing game board squares to a

string value made up of a single blank space, thus clearing out the game board and ready-

ing it for a new round of play.

Creating the Get-Permission Function
The Get-Permission function, shown next, is responsible for prompting the players for per-

mission to start a new game.

Windows PowerShell Programming for the Absolute Beginner

#This function gets the player’s permission to start a round of play

function Get-Permission {

#Loop until a valid reply is collected

while ($startGame -eq “False”) {

Clear-Host #Clear the Windows command console screen

#Display the game’s opening screen

Write-Host “`n`n`n`n”

Write-Host “ | |”

Write-Host “ Welcome to the X | O |”

write-Host “ | |”

Write-Host “ ————————————|———”

Write-Host “ T I C - T A C - T O E | |”

Write-Host “ | X |”

Write-Host “ | |”

Write-Host “ G A M E ! ———————————|———”

Write-Host “ | |”

Write-Host “ | O | X”

Write-Host “ | |”

#Collect the player’s input

$response = Read-Host “`n`n`n`n`n`n`n Would you like to play? (Y/N)”

#Validate the player’s input

if ($response -eq “Y”){ #The player wants to play a new round

$startGame = “True”

}

elseif ($response -eq “N”) { #The player wants to quit

$startGame = “False”

Clear-Host #Clear the Windows command console screen

exit #Terminate script execution

}

}

}

253Chapter 8 • Working with Files and Folders

254

As you can see, to liven things up a bit, this function displays a text-based graphic repre-

senting a Tic-Tac-Toe board and prompts the players to enter Y to start a new game. The func-

tion validates the player’s input allowing only Y or N as valid commands. A response of N

results in the termination of the script, which occurs when the exit command is executed.

Creating the Display-Board Function
The next function to be developed is the Display-Board function, whose code statements are

shown below. This function is called in order to show the current status of gameplay and to

prompt the player whose turn it is, as specified by the $player variable, to make a move. The

player’s move is then stored in $response.

#This function displays the game board, showing each player’s moves

function Display-Board {

Clear-Host #Clear the Windows command console screen

#Display the game board

Write-Host “`n`n T I C - T A C - T O E`n`n`n”

Write-Host “ 1 2 3`n”

Write-Host “ | |”

Write-Host “ A $A1 | $A2 | $A3”

write-Host “ | |”

Write-Host “ ———|————————|———”

Write-Host “ | |”

Write-Host “ B $B1 | $B2 | $B3”

Write-Host “ | |”

Write-Host “ ———|————————|———”

Write-Host “ | |”

Write-Host “ C $C1 | $C2 | $C3”

Write-Host “ | |”

#Collect player move

$move = Read-Host “`n`n`n`n Player $player’s turn”

$move #Return the Player’s input to the calling statement

}

Windows PowerShell Programming for the Absolute Beginner

Creating the Validate-Move Function
The Validate-Move function, shown here, is called after each player’s turn. Its job is to ensure

that only valid moves are accepted.

#This function determines if the player’s input is valid

function Validate-Move {

if ($move.length -eq 2) { #Valid moves consist of 2 characters

if ($move -match “[A-C][1-3]”) { #Regular expression test that looks

$result = “Valid” #for an instance of A, B, or C and an

} #instance of 1, 2, or 3.

else {

$result = “Invalid” #The move is invalid if it is not A1, A2, A3,

} # B1, B2, B3, C1, C2, or C3

}

else {

$result = “Invalid” #The move is invalid if it does not consists of 2

} #characters

#Move is invalid if it has already been assigned to a player during a

previous turn

if (($move -eq “A1”) -and ($A1 -ne “ “)) {$result = “Invalid”}

if (($move -eq “A2”) -and ($A2 -ne “ “)) {$result = “Invalid”}

if (($move -eq “A3”) -and ($A3 -ne “ “)) {$result = “Invalid”}

if (($move -eq “B1”) -and ($B1 -ne “ “)) {$result = “Invalid”}

if (($move -eq “B2”) -and ($B2 -ne “ “)) {$result = “Invalid”}

if (($move -eq “B3”) -and ($B3 -ne “ “)) {$result = “Invalid”}

if (($move -eq “C1”) -and ($C1 -ne “ “)) {$result = “Invalid”}

if (($move -eq “C2”) -and ($C2 -ne “ “)) {$result = “Invalid”}

if (($move -eq “C3”) -and ($C3 -ne “ “)) {$result = “Invalid”}

$result #Return this value to the statement that called this function

}

This function begins by setting up an if statement to ensure that the player’s move was

specified as two characters. The first character represents a coordinate on the horizontal

pane and the second character represents a coordinate on the vertical pane. An embedded

if statement then executes a regular expression that determines whether the first character

255Chapter 8 • Working with Files and Folders

256

supplied by the player is a A, B, or C and whether the second character is a 1, 2, or 3. If the

result of either of these two if statements evaluates as being false, the player’s move is

invalid. Next, a series of eight if statements is executed that checks to see if the move spec-

ified by the player was already made earlier in the game. The variable representing the

selected game board square is then assigned a value of X or O as appropriate. Therefore, a

variable whose value is a blank space is still available for selection and a variable assigned

to a value of X or O is not.

Creating the Check-Results Function
At the end of each player’s turn, the Check-Results function, shown here, is called. Its job is

to see if the current player’s last move has resulted in the player winning the game. This is

accomplished by checking the values of the variable representing game-board squares. The

variables representing each row and column in the game board are checked to see if they

have all been assigned to the current player (i.e., if there are three Xs or Os in a row). In addi-

tion, the function also checks for a winner diagonally.

#This function checks the game board to see if there is a winner

function Check-Results {

$winner = “” #Always reset this value before checking

#Look for a winner vertically

if (($A1 -eq $player) -and ($A2 -eq $player) -and ($A3 -eq $player)) {

$winner = $player

}

if (($B1 -eq $player) -and ($B2 -eq $player) -and ($B3 -eq $player)) {

$winner = $player

}

if (($C1 -eq $player) -and ($C2 -eq $player) -and ($C3 -eq $player)) {

$winner = $player

}

#Look for a winner horizontally

if (($A1 -eq $player) -and ($B1 -eq $player) -and ($C1 -eq $player)) {

$winner = $player

}

#Look for a winner horizontally

if (($A2 -eq $player) -and ($B2 -eq $player) -and ($C2 -eq $player)) {

$winner = $player

}

Windows PowerShell Programming for the Absolute Beginner

#Look for a winner horizontally

if (($A3 -eq $player) -and ($B3 -eq $player) -and ($C3 -eq $player)) {

$winner = $player

}

#Look for a winner diagonally

if (($A1 -eq $player) -and ($B2 -eq $player) -and ($C3 -eq $player)) {

$winner = $player

}

if (($A1 -eq $player) -and ($B2 -eq $player) -and ($C1 -eq $player)) {

$winner = $player

}

$winner #Return this value to the statement that called this function

}

Creating the Display-Results Function
The last function that you will need to create is the Display-Results function. This function,

shown below, is called at the end of each game in order to display the final status of the

game and to identify who, if anyone, has won.

#This function displays the game board and the final results of a round

#of play

function Display-Results {

Clear-Host #Clear the Windows command console screen

#Display the game board

Write-Host “`n`n T I C - T A C - T O E`n`n`n”

Write-Host “ 1 2 3`n”

Write-Host “ | |”

Write-Host “ A $A1 | $A2 | $A3”

write-Host “ | |”

Write-Host “ ———|————————|———”

Write-Host “ | |”

Write-Host “ B $B1 | $B2 | $B3”

Write-Host “ | |”

Write-Host “ ———|————————|———”

Write-Host “ | |”

Write-Host “ C $C1 | $C2 | $C3”

Write-Host “ | |”

257Chapter 8 • Working with Files and Folders

258

if ($tie -eq “True”) { #Check to see if the game resulted in a tie

Read-Host “`n`n`n`n The game has ended in a tie. Press Enter to continue”

}

else { #If a tie did not occur, identify the winner

Read-Host “`n`n`n`n Game over. $player has won. Press Enter to continue”

}

}

In addition to displaying the game board, this function examines the value of $tie to deter-

mine whether the game has ended in a tie. If this is not the case, the appropriate player is

identified as the winner.

Clearing the Game Board and Prompting for User Permission
Now that all variables and functions have been defined, it is time to work on putting

together the programming logic that will drive the overall execution of the script. This code

goes in the script file’s main processing section. To begin, add the following statements.

Clear-Board #Call function that resets the game board

Get-Permission #Call function that asks the players for permission to

start a new round of play

The first statement calls on the Clear-Board function to clear out any variable assignment that

may be left over from a previous game. The second statement calls on the Get-Permission

function, which prompts the players for permission to start a new game.

Creating a Loop to Control Script Execution
The rest of the logic in the main processing section is enclosed in the following loop, which

should be added to the bottom of the main processing section. This loop executes until the

value of $Terminate is set equal to True, which occurs only after the players tell the game to

close.

while ($Terminate -ne “True”) { #Loop until the player decides to quit

}

Windows PowerShell Programming for the Absolute Beginner

Creating a Loop to Control Individual Gameplay
Within the while loop that you just added to the script file, you need to create a second

inner loop. This loop, shown below, will control the execution of individual games.

while ($playGame -eq “True”) { #This loop controls the logic required to

#play a round of Tic-Tac-Toe

}

As you can see, this loop has been set up to run while the value of $playGame is set equal to

True. Once this occurs, the inner loop stops executing, returning control to the outer loop,

which will then prompt the players to play another game. If the players elect to play a new

game, the inner loop will be executed again. Otherwise, the game will be closed.

Collecting Player Moves
Next, add the following statements inside the inner loop. The first statement calls on the

Display-Board function, which displays the game board and prompts the current player to

make a move. The player’s move is then returned and assigned to $move. The second state-

ment executes the Validate-Move function. This function ensures that the move inputted by

the player was valid and returns a value indicating the results of that analysis which is then

stored in $validMove.

$move = Display-Board #Call function that displays the game board and

#collects player moves

$validMove = Validate-Move #Call the function that validates player moves

Validating Player Moves
Now that the player’s move has been validated, it is time to take action based on the results

of that analysis. This is accomplished by adding the following statement to the end of the

inner loop.

if ($validMove -eq “Valid”) { #Process valid moves

$moves++ #Increment variable that keeps track of the number of valid moves

#Assign the appropriate game board square to the player that selected it

if ($move -eq “A1”) {$A1 = $player}

259Chapter 8 • Working with Files and Folders

260

if ($move -eq “A2”) {$A2 = $player}

if ($move -eq “A3”) {$A3 = $player}

if ($move -eq “B1”) {$B1 = $player}

if ($move -eq “B2”) {$B2 = $player}

if ($move -eq “B3”) {$B3 = $player}

if ($move -eq “C1”) {$C1 = $player}

if ($move -eq “C2”) {$C2 = $player}

if ($move -eq “C3”) {$C3 = $player}

}

else { #Process invalid moves

Clear-Host #Clear the Windows command console screen

Read-Host “`n`n`n`n`n`n`n`n`n`nInvalid Move. Press Enter to try again”

continue #Repeat this loop

}

As you can see, an if statement has been set up that either increments the value of $moves

and then assigns the appropriate game board square to the player or displays an error mes-

sage instruction to try again.

Determining if Either Player Has Won the Game
The next set of statements to be added to the inner loop are shown below. The first state-

ment executes the Check-Results function, which is responsible for determining if one of

the players has won the game. The Check-Results function returns the results of its analysis,

which is then assigned to $winner. The rest of the statements shown below are organized

into two if statements. The first if statement checks to see if Player X has won the game.

The second if statement does the same thing for Player O.

$winner = Check-Results #Call function that determines if the game is over

#and who, if anyone, has won

if ($winner -eq “X”) { #Perform the following actions when Player X wins

Write-Host `a #Make a beep sound

Display-Results #Call function that displays game results

$playGame = “False”

continue #Repeat this loop

}

Windows PowerShell Programming for the Absolute Beginner

if ($winner -eq “O”) { #Perform the following actions when Player O wins

Write-Host `a #Make a beep sound

Display-Results #Call function that displays game results

$playGame = “False”

continue #Repeat this loop

}

In the event that one of the players has won the game, the following actions occur. First, a

beeping sound is played by passing the `a escape character to the Write-Host cmdlet to

notify the player that the game is over. The Display-Results function is then called. This

function displays the final results of the game, informing the players who won. The value

of $playGame is then set equal to False, which will terminate the execution of the inner loop

when the following continue command is executed.

Up to this point in the book, all of the Windows PowerShell game scripts that
you have developed have had one feature in common: They have been mute.
However, if you want you can liven up your scripts a bit by adding a little touch
of sound. Specifically, by inserting the `a escape character into a Write-Host
statement as demonstrated below, you can play a beep sound at predefined
points during the execution of your PowerShell scripts.

Write-Host `a #Make a beep sound

The Tic-Tac-Toe game uses this feature to help notify players when a game has
been won, lost, or tied.

Determining if a Tie Has Occurred
In the event that neither player has won the game, a check should be made to see if a tie has

occurred. This is accomplished by adding the following statements to the end of the inner loop.

if ($moves -eq 9) { #Perform the following actions when a tie occurs

Write-Host `a #Make a beep sound

$tie = “True”

Display-Results #Call function that displays game results

$playGame = “False”

continue #Repeat this loop

}

TRICK

261Chapter 8 • Working with Files and Folders

262 Windows PowerShell Programming for the Absolute Beginner

As you can see, an if statement is used to examine the value of $moves and if it is set equal

to 9, then every square on the game board has been selected and a tie is declared by setting

$tie equal to True.

Switching Between Player Turns
If a tie has not occurred and neither player has been found to have won the game, the inner

loop executes and prompts the next player to make a move. Before doing so, the following

statements need to be executed and should therefore be added to the end of the inner loop.

#The game is not over yet so switch player turn

if ($playGame -eq “True”) {

if ($player -eq “X”) {

$player = “O”

}

else {

$player = “X”

}

}

As you can see, these statements toggle the value of $player between X and O each time they

are executed, thus controlling whose turn it is.

Prompting Players to Play a New Game
The last set of code statements to be added to the script, shown below, should be added to

the end of the outer loop. These statements set up a while loop that prompts the players to

play a new game.

#This next set of statements only runs when the current round of play

#has ended

$response = “False” #Set default value in order to ensure the loop executes

#Loop until valid input is received

while ($response -ne “True”) {

Clear-Host #Clear the Windows command console screen

#Prompt the player to play a new game

$response = Read-Host “`n`n Play again? (Y/N)”

#Validate the player’s input #Keep playing

if ($response -eq “Y”) {

#Reset default variable settings to get ready for a new round of play

$response = “True”

$terminate = “False”

$playGame = “True”

Clear-Board

$player = “X”

$moves = 0

$tie = “False”

}

elseif ($response -eq “N”) { #Time to quit

Clear-Host #Clear the Windows command console screen

Write-host “ `n`n Please return and play again soon.”

Read-Host #Pause gameplay

$response = “True”

$terminate = “True”

}

else { #Invalid input received

Clear-Host #Clear the Windows command console screen

Write-Host “`n`n Invalid input. Please press Enter to try again.”

Read-Host #Pause gameplay

}

}

Only user input of Y or N is accepted. A value of Y starts a new round of play by resetting the

script variables back to their initial starting values. A reply of N terminates the game and the

execution of the script.

The Final Result
Okay, that’s it. Assuming you have not made any typos in keying in the script statements

that make up the Tic-Tac-Toe game, everything should work as advertised. I suggest you take

a little time to test the game and make sure it works as expected and then find a friend to

play against and show off your programming skills to.

263Chapter 8 • Working with Files and Folders

264

Summary
In this chapter you learned the ins and outs of programmatically administering files and

folders. This included learning how to create, delete, rename, copy, and move files and fold-

ers. You also learned how to read from and write to different types of files, including text

files, CSV files, and XML files. You also learned how to use regular expressions to perform

string pattern matching. On top of all this, you learned how to take control of cmdlet out-

put using the Format-List and Format-Table cmdlets. Now, before you move on to Chapter 9,

“Basic System Administration,” I suggest you set aside a few additional minutes to improve

the Tic-Tac-Toe game by tackling the following list of challenges.

Windows PowerShell Programming for the Absolute Beginner

C H A L L E N G E S

1. Provide players with the ability to view a Help screen that explains the rules of
the Tic-Tac-Toe game. In addition, revisit the text messages displayed by the
game with an eye to making them more user friendly.

2. Keep track of the number of games played as well as the number of games won,
lost, and tied by each player and make the display of this information available
at the end of each game.

3. Consider modifying the game so that when it first starts it collects both player’s
names and then uses this information to inform each player, by name, whose
turn it is and who has won the game.

Basic System
Administration

9
C H A P T E RC H A P T E R

T
he purpose of this chapter is to provide you with working examples of the

kinds of system tasks that you can perform with Windows PowerShell

scripts, as well as to give you an appreciation for the types of information

that Windows PowerShell puts at your fingertips. You will learn how to pro-

grammatically interact with the Windows registry and use it as a repository for

script-configuration settings. You will learn how to automate the management

and reporting of different Windows resources, including Windows processes and

services. This chapter will also teach you how to create and instantiate new

objects using .NET classes and COM objects, which will open up a whole new world

of programming capabilities. On top of all this, you will learn how to create a

new PowerShell game, PowerShell Blackjack.

Specifically, you will learn how to:

• Create registry keys and values and retrieve data stores in registry values

• Instantiate new objects based on .NET classes and COM objects

• Retrieve information about local and remote computers using WMI

• Administer Windows services, processes, and logs

Project Preview: The PowerShell Blackjack Game
In this chapter you will learn how to create a PowerShell version of the Blackjack card game.

In this version of the game, the player will go head to head against the computer in an effort

to get a better hand without busting by going over 21. When first started, the game’s wel-

come screen is displayed, as shown in Figure 9.1.

The welcome screen is also responsible for prompting the player for permission to start a

new round of play. This game interfaces with the Windows registry by accessing a key and

value that you will set up as you work your way through this chapter. If the required key and

value are not found in the registry and the player responds to the welcome screen by enter-

ing an N, the game will display an error message before terminating. If, however, the registry

key and value are in place, the game will instead display the screen shown in Figure 9.2,

should the player decide not to play the game after starting the script.

266 Windows PowerShell Programming for the Absolute Beginner

Figure 9.1

The welcome
screen for the

PowerShell
Blackjack game.

Figure 9.2

By default, the
game ends by

displaying
information about

itself and its
developer.

If, instead of quitting, the player elects to play a hand, a screen similar to the one shown in

Figure 9.3 is displayed, showing the player both her and the computer’s opening card.

At the bottom of the screen, the player is prompted to take another card. In order to take a

new card, the player must type Y. To pass on the new card and to stick with her hand, the

player must enter an N. Any other input is ignored by the game. The player, at her discretion,

may continue to take new cards, as demonstrated in Figure 9.4, until the value of her hand

exceeds 21, in which case she busts.

If the player busts, the computer wins without ever having to take its own turn. Assuming

that the player does not bust, the computer goes next. The computer will continue to take

new cards as long as the total value of its hand it less than 17. Once its hand exceeds a value

of 17, the computer’s turn ends (e.g., with a value over 17 but less than or equal to 21, or with

a bust).

Figure 9.5 shows the results of a typical round of play. In this example, the player has beaten

the computer.

267Chapter 9 • Basic System Administration

Figure 9.3

Unlike traditional
Blackjack, the

PowerShell
Blackjack game

starts off by
assigning a card to

the player and
to the computer.

Figure 9.4

The player’s
objective is to get

as close to 21 as
possible without

going over.

268

At the end of each hand, the player is prompted to either press Enter to start a new hand or

to type Q and press Enter to quit the game.

Accessing and Administering System Resources
Windows PowerShell provides system administrators, power users, and computer hobbyists

with access to a host of system, application, and network resources. The number of possi-

bilities is too great to cover them all in this book. Instead, this chapter will attempt to pro-

vide you with a sampling of examples that demonstrate some of the many avenues of system

administration that windows PowerShell can assist you in automating.

Listing and Stopping Processes
Windows operating systems run various processes behind the scenes that work together

to help keep your computer running smoothly. As you have already seen, you can use the

Get-Process cmdlet to get a listing of all the processes running on a computer, as demon-

strated here.

Get-Process

When executed, this statement will generate output similar to the following:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

———- ——— ——- ——- ——- ——— — —————-

17 2 540 180 25 0.09 3088 AcroTray

78 3 1948 184 33 0.20 2972 ALCXMNTR

102 5 1128 580 32 0.09 144 alg

334 9 4552 1360 63 6.92 3156 BackWeb-137903

2590 6 4296 5208 41 700.09 2424 CFD

Windows PowerShell Programming for the Absolute Beginner

Figure 9.5

The player has
won this hand.

549 6 1808 2380 28 244.97 540 csrss

612 18 16852 17948 103 798.88 1996 explorer

141 3 1036 2016 35 1.39 3164 FINDFAST

.

.

.

The amount of information returned by the Get-Process cmdlet can be a bit overwhelming.

To help streamline output, you can pass a specified process name to the cmdlet as an argu-

ment, as demonstrated next.

Get-Process PowerShell

When executed, this statement displays process information for just the PowerShell process.

Assuming that the specified process is currently running, this statement will generate out-

put similar to that shown here.

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

———- ——— ——- ——- ——- ——— — —————-

356 11 31636 31228 150 3.75 4000 powershell

You can also use a comma-separated list to display more than one process at a time, as

demonstrated next. You may also use wildcards to match any number of processes.

Get-Process notepad, powershell

From time to time, things go awry on Windows. As a result, processes get hung up, misbehave,

or fail to respond. When these types of circumstances occur, you can use the Stop-Process

cmdlet to terminate these processes. For example, the following statement terminates a

process by specifying its process ID.

Stop-Process 2932

You can just as easily terminate a process by specifying its process name, as demonstrated

here.

Stop-Process -processname notepad

Administering Windows Services
Another key component of the Windows operating system is the software services that it

runs under the covers in order to provide specific services. For example, the spooler service

is responsible for managing print operations. Windows PowerShell lets you interact with

and administer Windows services via a number of different cmdlets, as listed here.

269Chapter 9 • Basic System Administration

270

• Get-Service. Retrieves a list of installed services.

• Set-Service. Changes a service’s description, startup mode, or the display name of a

service.

• Suspend-Service. Pauses the execution of a service. However, the service will continue

to serve existing connections.

• Resume-Service. Resumes a paused service.

• Stop-Service. Stops a service.

• Start-Service. Starts a service.

• Restart-Service. Stops and then restarts a service.

To give you an idea of how you might use these cmdlets, take a look at the following Pow-

erShell script. This script is a text-based Print Wizard that is designed to help the user self-

diagnose and correct common printer problems before calling on the company’s IT Help

Desk for support. Admittedly, this script is rather simplistic, offering only a limited amount

of instruction, and it lacks input validity checking, relying instead on the user to carefully

follow instructions. Still, it provides a basis upon which a more sophisticated and robust

script might be developed.

#

Script Name: PrintWizard.ps1

Version: 1.0

Author: Jerry Lee Ford, Jr.

Date: January 1, 2007

Description: This PowerShell script is designed to assist the user in

resolving common printing problems.

Initialization Section

$response = “” #Stores user input

Functions and Filters Section

Windows PowerShell Programming for the Absolute Beginner

function Display-ServiceStatus {

Get-Service | Where-Object {$_.Name -eq “Spooler”}

}

function Display-Thanks {

Clear-Host

Write-Host “`nThank you for using the Print Wizard.”

exit

}

function Contact-HelpDesk {

Clear-Host

Write-Host “`nContact the Help Desk for additional assistance.”

exit

}

Main Processing Section

#Step 1 - Display the status of the Spooler service

Clear-Host

Write-Host “`nPRINT WIZARD`n”

Write-Host “The current status of the printer spooler service, which is”

Write-Host “responsible for managing the printing process, is: `n”

Display-ServiceStatus

Write-Host “`n`nA status of `”Running`” generally indicates that the”

Write-Host “spooler is operating correctly and the problem lies elsewhere.”

$response = Read-Host “`n`nDoes this solve your problem? (Y/N)”

if ($response -eq “Y”) {

Display-Thanks

}

else { #Step 2 - Check the paper supply

Clear-Host

271Chapter 9 • Basic System Administration

272

Write-Host “`nDoes your printer have paper in it? If not, add new paper”

Write-Host “and see if this fixes the problem.”

$response = Read-Host “`n`nDoes this solve your problem? (Y/N)”

if ($response -eq “Y”) {

Display-Thanks

}

else { #Step 3 - Restart the Spooler service

Clear-Host

Write-Host “`nSometimes stopping and starting the `”spooler`” service”

Write-Host “will fix printing problems.”

$response = Read-Host “`nRestart the service? (Y/N)”

if ($response -eq “Y”) {

Restart-service “Spooler”

Clear-Host

Write-Host “`nThe current status of the printer spooler service is:”`

“`n`n”

Display-ServiceStatus

}

else {

Contact-HelpDesk

}

$response = Read-Host “`n`nDoes this solve your problem? (Y/N)”

if ($response -eq “N”) {

Contact-HelpDesk

}

else {

Display-Thanks

}

}

}

As you can see, the script begins by defining a variable in which user input is stored, as well

as three functions, which are used to display information about the status of the spooler

server and to display text messages that are displayed as the script executes. When first

started, the script executes the Get-Service cmdlet to generate a list of active services and

then uses the Where-Object cmdlet to filter out all services except for the spooler service. The

output of this command is then displayed, as shown in Figure 9.6.

Windows PowerShell Programming for the Absolute Beginner

The user is then asked to respond with a value of Y or N, depending on whether the printing

problem is still occurring. Assuming that nothing has changed and that the user enters N,

the screen shown in Figure 9.7 is displayed.

At this point, the user is given new instructions to follow; in this case, checking the printer’s

paper supply. The script again asks the user if the printing problem has been resolved. If the

user responds by again entering N, the screen shown in Figure 9.8 is displayed. This time,

the script suggests that it may be helpful to restart the spooler service.

273Chapter 9 • Basic System Administration

Figure 9.6

The Print Wizard
displays the
status of the

spooler service.

Figure 9.7

The Print Wizard
provides a

suggestion that
the user check on

the printer’s
paper supply.

Figure 9.8

The Print Wizard
suggests

restarting the
spooler service.

274

Assuming that the user responds in the affirmative, the script executes the Restart-Service

cmdlet, passing it an argument of Spooler. The script then waits for the cmdlet to finish

executing and displays the status of the service again, as demonstrated in Figure 9.9.

If the user’s problem has not been corrected at this point, the script displays a message

advising the user to contact the Help Desk.

Accessing Event Logs
Windows PowerShell also provides you with the ability to work with and view event logs

stored on the computer using the Get-EventLog cmdlet. The Windows operating system

and its applications write different types of messages to these event logs providing status and

error information that can be used to track down and analyze problems. By passing an argu-

ment of –list to the Get-EventLog, you can instruct the cmdlet to generate a list of all the

event logs on your computer, as demonstrated here.

Get-EventLog –list

When executed, this statement will display output similar to this:

Max(K) Retain OverflowAction Entries Name

——— ——— ——————— ———- ——

512 0 OverwriteAsNeeded 225 Application

15,360 0 OverwriteAsNeeded 1,485 PowerShell

512 0 OverwriteAsNeeded 2,103 Security

512 0 OverwriteAsNeeded 2,297 System

Once you know what event logs are stored on your computer, you can view their contents.

For example, the following statement displays a list of all the messages that have been written

to the Application event log.

Get-EventLog Application

Windows PowerShell Programming for the Absolute Beginner

Figure 9.9

The Print Wizard
redisplays the
status of the

spooler service
after restarting it.

When executed, this statement will generate output similar to that shown below.

Index Time Type Source EventID Message

——- —— —— ——— ———- ———-

225 Nov 05 00:13 Erro Application Error 1001 Fault bucket 02724608.

224 Nov 05 00:13 Erro Application Error 1000 Faulting application ...

223 Nov 04 13:24 Info crypt32 7 Successful auto update..

222 Nov 03 18:27 Erro Application Hang 1002 Hanging application R...

221 Nov 03 13:12 Info ITSS 1 The description for E...

220 Nov 03 13:12 Info ITSS 1 The description for E...

219 Nov 03 13:12 Info ITSS 1 The description for E...

218 Nov 02 21:52 Erro Application Hang 1002 Hanging application i...

217 Oct 30 13:57 Info LoadPerf 1000 Performance counters ...

216 Oct 30 13:57 Info LoadPerf 1001 Performance counters ...

215 Oct 30 13:57 Info SecurityCenter 1800 The Windows Security ...

214 Oct 29 20:46 Erro Application Error 1000 Faulting application ...

213 Oct 28 01:24 Erro Application Error 1001 Fault bucket 02724608.

Event logs can hold many thousands of messages. If you are looking for something that may

have recently occurred, you can limit the amount of data that is returned by the Get-EventLog

cmdlet by passing it the –newest parameter, which specifies how many of the most recently

recorded messages you want to view, as demonstrated here.

Get-Eventlog Application -newest 4

When executed, this statement will generate output similar to this:

Index Time Type Source EventID Message

——- —— —— ——— ———- ———-

224 Nov 05 00:13 Erro Application Error 1000 Faulting application ...

223 Nov 04 13:24 Info crypt32 7 Successful auto update..

222 Nov 03 18:27 Erro Application Hang 1002 Hanging application R...

221 Nov 03 13:12 Info ITSS 1 The description for E...

You may have noticed that the data returned by the Get-EventLog is truncated, making it

pretty unusable. You can fix this using the Format-List cmdlet to generate a readable report.

Get-Eventlog application -newest 1 | Format-List > C:\Temp\Sample.txt

In this example, the last message recorded in the Application event log is retrieved and

stored as a report in a text file named Sample.txt. When opened, this file will contain infor-

mation similar to that shown here.

275Chapter 9 • Basic System Administration

276

Index : 224

EntryType : Error

EventID : 1000

Message : Faulting application game.exe, version 1.0.0.1, faulting

module game.exe, version 1.0.0.1, fault address 0x00375ac6.

Category : (0)

CategoryNumber : 0

ReplacementStrings : {game.exe, 1.0.0.1, game.exe, 1.0.0.1...}

Source : Application Error

TimeGenerated : 11/5/2006 12:13:29 AM

TimeWritten : 11/5/2006 12:13:29 AM

UserName :

It may be helpful to generate a report that contains only certain types of event messages.

For example, you might only want to see messages that have a certain EventID value or that

are generated by a particular source. This can be accomplished by piping the output of the

Get-EventLog cmdlet to the Where-Object cmdlet, as demonstrated here.

Get-Eventlog application | Where-Object {$_.Source -eq “Userenv”}

When executed, this statement generates the following list of event messages, which you

might then decide to format and save as a report.

Index Time Type Source EventID Message

——- —— —— ——— ———- ———-

203 Oct 12 03:10 Warn Userenv 1517 Windows saved user HP...

167 Oct 09 21:21 Warn Userenv 1517 Windows saved user HP...

138 Sep 15 03:07 Warn Userenv 1517 Windows saved user HP...

102 Sep 06 13:28 Warn Userenv 1517 Windows saved user HP...

90 Aug 30 20:57 Warn Userenv 1517 Windows saved user HP...

75 Aug 15 03:07 Warn Userenv 1517 Windows saved user HP...

71 Aug 10 21:21 Warn Userenv 1517 Windows saved user HP...

65 Aug 01 20:23 Warn Userenv 1517 Windows saved user HP...

38 Jul 17 03:08 Warn Userenv 1517 Windows saved user HP...

Retrieving System Information Using WMI
As you have just seen, Windows PowerShell provides you with access to cmdlets that collect

information about different aspects of the computer. However, there is only a limited num-

ber of these cmdlets available. Windows PowerShell makes up for this by allowing you to use

Microsoft’s Windows Management Instrumentation (WMI) in order to tap into and access

Windows PowerShell Programming for the Absolute Beginner

system information from a variety of different sources, including the operating system,

services, application, and hardware.

WMI is a system-management interface designed to facilitate access to system information.

Windows PowerShell encapsulates its support for WMI through the Get-WmiObject cmdlet.

The amount of information that can be accessed through WMI is staggering. A complete dis-

cussion of WMI is well beyond the scope of this book. However, to give you an appreciation

of WMI and the kinds of data that you can get from it, the next several sections will provide

you with a series of examples that show how to access BIOS, processor, network, and appli-

cation information.

Retrieving BIOS Information
Using the Get-WmiObject cmdlet, you can retrieve system BIOS information from any Windows

computer. Computer administrators might use this information in order to determine on

which computers to apply a BIOS update in the event a BIOS-related problem is discovered

on certain models of computers.

All that you have to do to retrieve BIOS information is pass Win32-BIOS as an argument to the

cmdlet.

$x = Get-WmiObject Win32_BIOS

$x

When executed, BIOS information is collected and stored in a variable named $x. In the pre-

ceding example, this data is then displayed. When executed, this example will display out-

put similar to that shown here.

SMBIOSBIOSVersion : 3.10

Manufacturer : American Megatrends Inc.

Name : BIOS Date: 06/27/03 20:48:31 Ver: 08.00.08

SerialNumber : MXM33409GZ NA200

Version : A M I - 6000327

Retrieving System Information
You can also use the Get-WmiObject cmdlet to retrieve processor information by passing it an

argument of Win32_Processor as shown next. This information might prove useful in situations

in which an administrator needs to determine if a computer’s processor meets the minimum

requirements to run a particular application. The information that is returned will include

processor name, description, manufacturer, and other processor related data.

Get-WmiObject Win32_Processor

277Chapter 9 • Basic System Administration

278

When executed, this statement will display output similar to this:

AddressWidth : 32

Architecture : 0

Availability : 3

Caption : x86 Family 15 Model 2 Stepping 9

ConfigManagerErrorCode :

ConfigManagerUserConfig :

CpuStatus : 1

CreationClassName : Win32_Processor

CurrentClockSpeed : 2599

CurrentVoltage :

DataWidth : 32

Description : x86 Family 15 Model 2 Stepping 9

DeviceID : CPU0

ErrorCleared :

ErrorDescription :

ExtClock : 200

Family : 2

InstallDate :

L2CacheSize : 0

L2CacheSpeed :

LastErrorCode :

Level : 15

LoadPercentage : 0

Manufacturer : GenuineIntel

MaxClockSpeed : 2599

Name : Intel(R) Pentium(R) 4 CPU 2.60GHz

.

.

.

Due to the volume of information that this statement generates, I’ve shortened the list of

output a bit. Typically, to prevent information overload, you will want to use the Format-List

cmdlet to limit the display of processor data to just the information that you are interested in.

Get-WmiObject Win32_Processor | Format-List Name, Caption, Manufacturer

When executed, this statement displays a far more manageable list of processor information.

Windows PowerShell Programming for the Absolute Beginner

Name : Intel(R) Pentium(R) 4 CPU 2.60GHz

Caption : x86 Family 15 Model 2 Stepping 9

Manufacturer : GenuineIntel

Retrieving Networking Data
WMI also provides access to network information. Computer administrators might use this

information to verify a computer network configuration or to troubleshoot network con-

nectivity problems. For example, to retrieve a list of all active network protocols, you would

pass Win32_NetworkProtocol as an argument to the Get-WmiObject cmdlet as shown here.

Get-WmiObject Win32_NetworkProtocol

When executed, this statement will display a list of information about all of the networking

protocols installed on your computer, as demonstrated by the following output:

Caption : Tcpip

GuaranteesDelivery : True

GuaranteesSequencing : True

ConnectionlessService : False

Status : OK

Name : MSAFD Tcpip [TCP/IP]

.

.

.

Retrieving Application Data
WMI also provides you with access to information about the applications stored on your

computer. A computer administrator might, for example, create a PowerShell script that

retrieves a listing of all the applications installed on a computer. For example, the following

statements will retrieve information about applications that have been installed using the

Windows Installer service.

Get-WmiObject Win32_Product

When executed, this statement will display data similar to this:

IdentifyingNumber : {2DFDD440-A33C-42E4-A366-71E6CB4246A0}

Name : Windows PowerShell

Vendor : Microsoft Corporation

Version : 1.0.9567.1

Caption : Windows PowerShell

279Chapter 9 • Basic System Administration

280

IdentifyingNumber : {AC76BA86-7AD7-1033-7B44-A70800000002}

Name : Adobe Reader 7.0.8

Vendor : Adobe Systems Incorporated

Version : 7.0.8

Caption : Adobe Reader 7.0.8

IdentifyingNumber : {7131646D-CD3C-40F4-97B9-CD9E4E6262EF}

Name : Microsoft .NET Framework 2.0

Vendor : Microsoft Corporation

Version : 2.0.50727

<SPACE> next page; <CR> next line; Q quit

Caption : Microsoft .NET Framework 2.0

Pulling WMI Data from Remote Computers
Assuming that you have the security permissions required to do so, the Get-WmiObject

cmdlet can also be used to retrieve information from remote network computers. To do so,

just append the –computername parameter to the end of your statements, as demonstrated

here.

Get-WmiObject Win32_ComputerSystem -computername HP

In this example, the Get-WmiObject is executed and instructed to retrieve computer system

data from a network computer named HP.

Domain : MSHOME

Manufacturer : HP Pavilion 061

Model : DF253A-ABA a250n

Name : HP

PrimaryOwnerName :

TotalPhysicalMemory : 536195072

Consider as a practical example of this capability a scenario in which a computer adminis-

trator has been asked to install a new application on 20 computers residing on a company’s

local area network. Some of the computers might be behind locked doors or in rooms occu-

pied by high-level executives and thus not readily accessible during the normal course of the

day. In addition, the new application might require 500 MB of memory in order to run.

Rather than physically visiting each computer to determine the amount of memory installed

on it, the computer administrator could instead create a PowerShell script that remotely

retrieves each computer’s total physical memory. For example, the following statement could

be used to display a list of computers on the LAN and their available physical memory.

Windows PowerShell Programming for the Absolute Beginner

Get-WmiObject Win32_ComputerSystem –computername HP1, HP2, HP3 | Format-List

Name, TotalPhysicalMemory

In this example, data is retrieved from the three network computers. As you can see, the

names of each remote computer are provided to the –computername parameter as a comma-

separated list. The resulting output is then piped to the Format-List cmdlet, which displays

the name of each computer and its available physical memory, as demonstrated here.

Name : HP1

TotalPhysicalmemory : 536195072

Name : HP2

TotalPhysicalmemory : 1072390144

Name : HP3

TotalPhysicalmemory : 536195072

Taking Advantage of .NET Classes
Windows PowerShell depends upon the .NET Framework for much of its capabilities. Numer-

ous cmdlets have been designed to manipulate .NET resources or to retrieve data provided

by .NET. However, you are not limited to just the .NET resources exposed by PowerShell

cmdlets. Thanks to the New-Object cmdlet, you can create and instantiate an instance of

other .NET classes. For example, you have already seen examples in this book of how to use

the New-Object cmdlet to instantiate an instance of the Random class, as demonstrated here.

$randomNo = New-Object System.Random

When executed, this statement creates an instance of a Random object. Once instantiated, you

have access to the properties and methods associated with this object. In the case of the

Random object, you have access to its Next method, which generates a random number within

a specified range.

$number = $randomNo.Next(1, 11)

Here, a random number (integer) is created in the range of 1 to 10 and assigned to a variable

named $number.

Taking Advantage of COM Objects
The New-Object cmdlet just discussed in the previous section, can also be used to instantiate

and control COM objects. COM stands for Component Object Model and is a Microsoft technology

that allows Windows PowerShell to programmatically interact with and control objects, which

includes Active X controls and various Windows applications (those that support COM).

281Chapter 9 • Basic System Administration

282

As an example, the following statements demonstrate how to create a small PowerShell

script that can use COM to instantiate an instance of Microsoft Word, create a new Word

document, set a font type and font size, write output to the file, and then save it. Once the

document is saved, the new document is closed and Word is then terminated.

$processList = Get-Process #Retrieve a listing of active processes

$currentDate = Get-Date #Retrieve the current date and time

$MSWord = New-Object –ComObject “Word.Application” #Instantiate Word

$MSWord.Documents.Add() #Use the Document object’s Add method to create

#a new document

$MSWord.Selection.Font.Name = “Arial” #Set the Font object’s Name property

$MSWord.Selection.Font.Size = 12 #Set the Font object’s Size property

#Use the Selection Object’s TypeText method to write output to the document

$MSWord.Selection.Typetext($ProcessList)

#Use the ActiveDocument object’s SaveAs method to save the document and

#then its Close method to close the document

$MSWord.ActiveDocument.SaveAs(“C:\Temp\WordReport.doc”)

$MSWord.ActiveDocument.Close()

#Use the application object’s Quit method to terminate Microsoft Word

$MSWord.Quit()

When executed, this example displays the output shown in Figure 9.10.

In this example, I used the object model belonging to Word 97. Different applications have

different object models. Different versions of the same application may also use slightly dif-

ferent versions of the same object model. Therefore, it may take a little research (using the

application developer’s documentation) before you can learn enough about an application’s

object model to be able to programmatically interact with it.

The application object resides at the top of the Word object model. Once used
to instantiate an instance of Word, you can use other lower-level objects and
their methods and properties to automate Word tasks. To learn more about the
Word object model, visit http://msdn.microsoft.com/office.

HINT

Windows PowerShell Programming for the Absolute Beginner

http://msdn.microsoft.com/office

As another example of how to work with COM objects, consider the following statements.

$InternetExplorer = New-Object –ComObject “InternetExplorer.Application”

$InternetExplorer.Navigate(“http://www.tech-publishing.com”)

$InternetExplorer.Visible = “True”

When executed, this example uses the New-Object cmdlet to create an instance of

Internet Explorer. Next, Internet Explorer’s Navigate method is used to load the www.tech-

publishing.com web page. Lastly, Internet Explorer’s Visible property is set equal to True,

making the browser and the specified web page visible. Figure 9.11 shows an example of the

output that you will see if you create and run this example,

283Chapter 9 • Basic System Administration

Figure 9.10

A Microsoft Word
document

containing the
output generated

by the Get-
Process cmdlet.

Figure 9.11

Using COM to
automate the
execution of

Internet Explorer.

www.tech-publishing.com
www.tech-publishing.com

284 Windows PowerShell Programming for the Absolute Beginner

Hive Shortcut Description

HKEY_CURRENT_USER hkcu Stores information about the currently logged on user

HKEY_LOCAL_MACHINE hklm Stores global computer settings

TA B L E 9.1 R E G I S T R Y K E Y S A C C E S S I B L E B Y T H E

W I N D O W S P O W E R S H E L L

Programmatically Interacting with the Windows
Registry
Another powerful capability of Windows PowerShell is its ability to interact with the Windows

registry. This means that not only can you write PowerShell scripts that can access data stored

in the Windows registry, but you can also store data in the registry.

The Windows registry is organized into five high-level keys, also referred to as hives. Registry

keys are somewhat analogous to folders on the Windows file system. Keys are used to store other

keys (or subkeys) and values. Values are analogous to files on the Windows file system. Actual

data stored in the registry is stored inside values. Of the five high-level root keys, Windows

PowerShell gives you access to the values stored in two of them, as outlined in Table 9.1.

Windows PowerShell treats registry values as properties. This lets you use the Get-ItemProperty

cmdlet to view information about a key and to list all its values, as demonstrated here.

Set-Location hklm:\SOFTWARE\Microsoft\PowerShell\1\PowerShellEngine

Get-ItemProperty .

The first statement shown here switches from the current provider, typically the Windows

file system, to a subkey located on the HKEY_LOCAL_MACHINE hive. The second statement uses

the Get-ItemProperty cmdlet to retrieve information about the current subkey. When exe-

cuted, these statements will generate output similar to that shown next.

Windows operating systems use the registry to store data about the operating
system as well as data about the computer’s hardware, software, and user-
configuration settings. The integrity of the registry is critical to the proper oper-
ation of the computer. Therefore, it is important that you take great care when
working with it. Otherwise, if you accidentally change or delete the wrong key
or value, it can have an unpredictable impact on the operation of your computer.

TRAP

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHIN

E\SOFTWARE\Microsoft\PowerShell\1\PowerShellEngine

PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHIN

E\SOFTWARE\Microsoft\PowerShell\1

PSChildName : PowerShellEngine

PSDrive : HKLM

PSProvider : Microsoft.PowerShell.Core\Registry

ApplicationBase : C:\Program Files\Windows PowerShell\v1.0\

ConsoleHostAssemblyName : Microsoft.PowerShell.ConsoleHost, Version=1.0.9567.1,

Culture=neutral, PublicKeyToken=31bf3856ad364e35,

ProcessorArchitecture=msil

ConsoleHostModuleName : C:\Program Files\Windows PowerShell\v1.0\Microsoft.

PowerShell.ConsoleHost.dll

PowerShellVersion : 1.0

RuntimeVersion : v2.0.50727

Using the Get-ItemProperty cmdlet, you can also retrieve the data stored in a specific value,

as demonstrated here.

$PSVer = $(get-ItemProperty

hklm:\SOFTWARE\Microsoft\PowerShell\1\PowerShellEngine).PowerShellVersion

$PSVer

Here, the data stored in the PowerShellVersion value is retrieved and displayed as shown

below.

1.0

Note the syntax involved in setting up this operation. Specifically, in order to facilitate an

object reference, you had to create a variable object reference by keying in a $ followed by

parentheses, inside which you identified the logical path to the key that contains the value.

With the object reference set up, you were then able to use familiar dot notation to identify

the specific object property that you wanted to retrieve. Remember, Windows PowerShell

treats registry values as object properties.

If you want, you can use the Regedit utility to visually verify the PowerShellVersion value and

its associated data by clicking on Start > Run and then typing Regedit and pressing the Enter

key. The Regedit utility lets you navigate the Windows registry in a manner similar to the

way that Windows Explorer lets you navigate the Windows file system, as demonstrated in

Figure 9.12.

285Chapter 9 • Basic System Administration

286

To further demonstrate PowerShell’s ability to interact with the Windows registry, let’s

develop a new PowerShell script that adds a new subkey and value to the hkcu hive. The key

that will be created is named PSBlackjack and the value will be named Credits. Credits will

be used to store a string value of true. Later, when you create this chapter’s game project,

the PowerShell Blackjack game, the game will look for the data stored in the Credits value

to determine whether to display additional information about the game and its author at

the conclusion of the game.

The code for this new PowerShell script, which you should name BJSetup.ps1, is provided

here.

#

Script Name: BJSetup.ps1 (Setup script for the PowerShell Blackjack Game)

Version: 1.0

Author: Jerry Lee Ford, Jr.

Date: January 1, 2007

Description: This PowerShell script creates a registry key for the

PowerShell Blackjack game under the HKEY_CURRENT_USER hive

Initialization Section

$key = “PSBlackjack” #Name of the registry key to be created

$value = “Credits” #Name of the registry value to be created

$type = “string” #Type of data stored in the new registry value

$data = “true” #Data to be stored in the new registry value

Windows PowerShell Programming for the Absolute Beginner

Figure 9.12

Using Regedit to
view registry keys
and values stored
in the hklm hive.

Functions and Filters Section

function Create-KeyAndValue {

New-Item -name $key #Create a new registry key

New-ItemProperty $key -name $value -Type $type -value $data

}

Main Processing Section

Set-Location hkcu:\

Create-KeyAndValue

As you can see, this is a relatively small and straightforward script. It begins by defining vari-

ables representing the key and value to be created as well as the type of data being stored

(string) and its text. Next, a function named Create-KeyAndValue is defined that, when called,

uses the New-Item cmdlet to create the new registry key and the New-ItemProperty cmdlet to

create and store the Credits value inside the key.

Lastly, the statements in the main processing section change the focus from the file system to

the hkcu hive and then create the new key and its value by executing the Create-KeyAndValue

function. Once executed, this script generates the key and value required by the PowerShell

Blackjack game, as shown in Figure 9.13.

287Chapter 9 • Basic System Administration

Figure 9.13

Viewing the
PowerShell

Blackjack game’s
newly created

subkey and value
using the

Regedit utility.

288

Back to the PowerShell Blackjack Game
Okay, now it is time to return your attention back to the chapter’s main game project, the

PowerShell Blackjack game. This PowerShell script will interact with the Windows registry,

accessing the PSBlackjack key and Credits value that were created earlier in the chapter

when you created and executed the BJSetup.ps1 script. Based on the value assigned to Credits,

the game will display or suppress the display of a screen that provides players with infor-

mation about the game and its author. The overall logical flow of the PowerShell Blackjack

game is straightforward. Its development will be completed in 12 steps, as outlined here:

1. Create a new script file using the Windows PowerShell template file.

2. Define and initialize script variables.

3. Create the Get-Permission function.

4. Create the Check-Registry function.

5. Create the Get-PlayerHand function.

6. Create the Deal-Hand function.

7. Create the Get-Card function.

8. Create the Get-ComputerHand function.

9. Create the Analyze-Results function.

10. Create the Get-PlayerHand function.

11. Create the Get-NewCard function.

12. Develop code for the main processing section.

Creating a New Script File
To start, use your PowerShell script template to create a new script file named Blackjack.ps1

and modify its contents, as demonstrated here.

#

Script Name: Blackjack.ps1 (The Blackjack Game)

Version: 1.0

Author: Jerry Lee Ford, Jr.

Date: January 1, 2007

Description: This PowerShell script is a single player implementation of

the popular casino blackjack game

Windows PowerShell Programming for the Absolute Beginner

Initialization Section

Functions and Filters Section

Main Processing Section

Defining and Creating New Variables
Now that you have created your new script file, let’s add the following variable definitions

to the script’s initialization section.

$startGame = “False” #Variable used to determine if the game is played

$playerBusted = “False” #Variable used to track when the player busts

$randomNo = New-Object System.Random #This variable stores a random object

$playerHand = 0 #Stores the current value of the player’s hand

$computerHand = 0 #Stores the current value of the computer’s hand

$playAgain = “True” #controls the execution of the loop that controls the

#execution of logic in the main processing section

As you can see, these statements define a number of script variables and assign their initial

values. Also, as you have seen in previous game scripts, the New-Object cmdlet is used to

create a new instance of the Random object, which will be used later in the script to generate

randomly selected numbers representing game cards.

Creating the Get-Permission Function
The Blackjack game consists of a number of custom functions, each of which is designed to

perform a particular task. The first of these functions is the Get-Permission function, shown

next. Add this function, as well as the functions that will follow, to the script’s function and

filters section.

#This function gets the player’s permission to begin the game

function Get-Permission {

#Loop until a valid reply is collected

while ($startGame -eq “False”) {

Clear-Host #Clear the Windows command console screen

289Chapter 9 • Basic System Administration

290

#Display the game’s opening screen

Write-Host “`n`n`n”

Write-Host “ Welcome to the” -foregroundColor Blue

write-Host “”

Write-Host “”

Write-Host “ P O W E R S H E L L B L A C K J A C K G A M E”`

-foregroundColor Blue

Write-Host “”

Write-Host “”

Write-Host “”

Write-Host “”

Write-Host “”

Write-Host “”

Write-Host “”

Write-Host “”

#Collect the player’s input

$response = Read-Host “`n`n`n`n`n`n`n Would you like to play? (Y/N)”

#Validate the player’s input

if ($response -eq “Y”){ #The player wants to play

$startGame = “True”

}

elseif ($response -eq “N”) { #The player wants to quit

Check-Registry

exit #Terminate script execution

}

}

}

As you can see, this function uses a while loop to control the display of the script’s welcome

screen and to collect and validate the player’s response when prompted to play the game. If

the player enters Y when prompted to play the game, the value of $startGame is set equal to

“True”, terminating the execution of the loop and allowing the script to continue running.

Windows PowerShell Programming for the Absolute Beginner

If, on the other hand, the player enters N, the Check-Registry function is called and then the

exit command is executed, thus terminating the script’s execution.

Note the addition of the –ForegroundColor parameter to the Write-Host
cmdlet. This parameter provides you with the ability to specify the font color to
be used when displaying text in the Windows command console. The Write-Host
cmdlet also accepts a –BackgroudColor parameter that lets you specify the
background color when displaying text in the Windows command console.

Creating the Check-Registry Function
The Check-Registry function is responsible for determining whether or not to display a

screen at the end of the game. This screen provides a little information about the game and

its author. It accomplishes this task by checking the value of the hkcu\PSBlackjack\Credits

value stored in the Windows registry. If Credits is equal to “True”, the additional screen is

displayed. Otherwise, it is not displayed.

#This function retrieves a registry value that specifies whether or not

#the script should display a splash screen if the player chooses not to

#play a game after starting the script

function Check-Registry {

Clear-Host #Clear the Windows command console screen

$currentLocation = Get-Location #Keep track of the current directory

Set-Location hkcu:\ #Change to the HKEY_CURRENT_USER hive

#Retrieve the data stored in the Credits value under the PSBlackjack

#subkey

$regKey = $(Get-ItemProperty hkcu:\PSBlackjack).Credits

if ($regKey -eq “True”) { #If the registry value is set to true

#display the closing splash screen

Write-Host “ `n`n`n”

Write-Host “ P O W E R S H E L L B L A C K J A C K`n`n`n”`

-foregroundColor Blue

write-Host “ Developed by Jerry Lee Ford, Jr.`n`n”

Write-Host “ Copyright 2007`n`n`n`n”

Write-Host “ www.tech-publishing.com`n`n`n`n`n`n”

TRICK

291Chapter 9 • Basic System Administration

292

}

Set-Location $currentLocation #Restore the current working directory

}

Note that before using the Set-Location cmdlet to change the focus from the file system to

the registry, the function sets the value of $currentLocation equal to the current working

directory. Next, the Get-ItemProperty cmdlet is used to retrieve the value stored in Credits,

which is then stored in $regKey. An if statement then analyzes the value of $regKey to deter-

mine whether to display the additional screen. Finally, the Set-Location cmdlet is executed

again, restoring the focus back to the file system.

Creating the Play-Game Function
The next function to be developed is the Play-Game function, shown below. This function’s

job is to execute other functions, as appropriate, in order to manage both the player’s and

the computer’s hand, as well as to analyze game results.

#This function controls the execution of an individual round of play

function Play-Game {

Deal-Hand #Call the function that deals the opening hands

Get-PlayerHand #Call the function that manages the player’s hand

#If the player has busted the game is over, otherwise it is the

#computer’s turn

if ($script:playerBusted -eq “False”) {

Get-ComputerHand #Call the function that manages the computer’s hand

}

Analyze-Results #Call the function that analyzes game results and

#declares a winner

}

Creating the Deal-Hand Function
The Deal-Hand function, shown next, is called by the Play-Game function each time a new

round of play is initiated. Its job is to see to it that an initial card is retrieved for both the

player and the computer.

Windows PowerShell Programming for the Absolute Beginner

#This function deals the player and computer’s initial hands

function Deal-Hand {

$script:playerHand = Get-Card #Assign a card to the player’s hand

$script:computerHand = Get-Card #Assign a card to the computer’s hand

}

As you can see, this function makes two calls to the Get-Card function, storing the results

(i.e., cards) that are returned in script variables.

Creating the Get-Card Function
The code for the Get-Card function is shown next. When called, this function uses the Random

object’s Next method to generate a random number in the range of 1 to 13. If the random

number turns out to be a 1, it is considered to be an ace. If the number is greater than 10, it

is considered to be a face card (Jack, Queen, or King). The value of the randomly generated

number is returned to the calling statement. However, if an ace is generated (e.g., 1) a value

of 11 is returned and if a face card is generated (e.g., 11, 12, 13), a value of 10 is returned.

#This function retrieves a random number representing a card and returns

#the value of that card back to the calling statement

function Get-Card {

$number = 0

#Generate the game’s random number (between 1 - 13)

$number = $randomNo.Next(1, 14)

if ($number -eq 1) {$number = 11} #Represents an ace

if ($number -gt 10) {$number = 10} #Represents a jack, queen, or king

$number #Return the number back to the calling statements

}

Creating the Get-ComputerHand Function
The Get-ComputerHand function, shown next, is responsible for playing the computer’s hand.

It does so by setting up a while loop that executes as long as the value of the computer’s

hand is less than 17.

293Chapter 9 • Basic System Administration

294

#This function is responsible for managing the computer’s hand

function Get-ComputerHand {

$tempCard = 0 #Stores the value of the computer’s new card

#The computer continues to take hits as long as its hand’s value is less

#than seventeen

while ($computerHand -lt 17) {

$tempCard = Get-Card #Get a new card for the computer

#Add the value of the new card to the computer’s hand

$script:computerHand = $script:computerHand + $tempCard

}

}

As you can see, each time the loop executes, the Get-Card function is called and the value

returned by this function is added to the $computerHand variable. This loop stops executing

as soon as the value of this variable becomes 17 or greater.

Creating the Analyze-Results Function
The Analyze-Results function, shown below, is called by the Game-Play function and is respon-

sible for determining whether the player or the computer won the game, or if they tied.

#This function analyzes and displays the results of each game

function Analyze-Results {

Clear-Host #Clear the Windows command console screen

#Display the player and computer’s final hand

Write-Host “`n`n`n`n RESULTS:`n`n”

Write-host “ Player Hand: $playerHand`n”

Write-Host “ Computer Hand: $computerHand`n`n”

#See if the player busted

if ($playerBusted -eq “True”) {

Write-Host “`a You have gone bust.” -ForegroundColor Blue

}

Windows PowerShell Programming for the Absolute Beginner

else { #See if the computer busted

if ($computerHand -gt 21) {

Write-host “`a The computer has gone bust.” -ForegroundColor Blue

}

else { #Neither the player nor the computer busted so look for a winner

if ($playerHand -gt $computerHand) {

Write-Host “`a You Win!” -ForegroundColor Blue

}

if ($playerHand -eq $computerHand) {

Write-Host “`a Tie!” -ForegroundColor Blue

}

if ($playerHand -lt $computerHand) {

Write-host “`a You lose.” -ForegroundColor Blue

}

}

}

}

As you can see, if $playerBusted equals “True”, the player has lost the game (i.e., the value of

the player’s hand has exceeded 21). If the player did not go bust, the function next looks to

see if the computer went bust. If neither the player nor the computer went bust, the value

of the player’s hand is compared to the value of the computer’s hand to determine who won

(i.e., whose hand has the higher value).

Creating the Get-PlayerHand Function
The Get-PlayerHand function, shown below, is responsible for assisting players in managing

their hands and is called by the Play-Game function.

#This function displays the value of both the player and computer’s

#current hands and prompts the player to take another card

function Get-PlayerHand {

$keepGoing = “True” #Control the execution of the loop that manages

#the player’s hand

$response = “” #Stores the players input

#Loop until a valid reply is collected

295Chapter 9 • Basic System Administration

296

while ($keepGoing -eq “True”) {

Clear-Host #Clear the Windows command console screen

#Display the player and computer’s current hands

Write-Host “`n`n”

Write-Host “”

write-Host “ CURRENT HAND:”

Write-Host “`n”

Write-Host “ Player Hand: $playerHand”

Write-Host “”

Write-Host “ Computer Hand: $computerHand”

Write-Host “”

Write-Host “”

Write-Host “”

Write-Host “”

Write-Host “”

Write-Host “”

#Prompt the player to take another card

$response = Read-Host “`n`n`n`n`n`n`n Do you want another card? (Y/N)”

#Validate the player’s input

if ($response -eq “Y”){

Get-NewCard #Get another card for the player

}

elseif ($response -eq “N”) { #The player wants to quit

$keepGoing = “False”

Clear-Host #Clear the Windows command console screen

}

if ($playerHand -gt 21) { #The player has gone bust

$script:playerBusted = “True”

$keepGoing = “False”

}

}

}

Windows PowerShell Programming for the Absolute Beginner

This function uses a while loop to display the current value of both the player’s and the

computer’s hand and to ask the player if she would like a new card. If the player responds

in the affirmative, the Get-NewCard function is called. The loop stops executing when either

the player decides to stop asking for new cards or when her hand busts by exceeding a value

of 21.

Creating the Get-NewCard Function
The Get-NewCard function, shown below, is called whenever the player elects to add another

card to her hand. It accomplishes this by calling the Get-Card function and then adding the

value returned by that function to the $playerHand variable.

#This function is called whenever the player elects to get a new card

#and is responsible for updating the value of the player’s hand

function Get-NewCard {

$tempCard = 0 #Stores the value of the player’s new card

$tempCard = Get-Card #Get a new card for the player

#Add the value of the new card to the player’s hand

$script:playerHand = $script:playerHand + $tempCard

}

Adding Controlling Logic to the Main Processing Section
At this point, all of the script functions have been defined. All that remains is to add a little

controlling logic to the script’s main processing section. The statements that provide this

logic are outlined here.

Get-Permission #Call function that asks the players for permission to

#start the game

#Continue playing new games until the player decides to quit the game

while ($playAgain -eq “True”) {

Play-Game #Call function that controls the play of individual games

#Prompt the player to play a new game

297Chapter 9 • Basic System Administration

298

$response = Read-Host “`n`n`n`n`n`n`n`n`n`n Press Enter to play”`

“again or Q to quit”

if ($response -eq “Q”) { #The player wants to quit

$playAgain = “False”

Clear-Host #Clear the Windows command console screen

}

else { #The player did not enter Q so let’s keep playing

$playAgain = “True”

$playerBusted = “False”

}

}

The first statement calls on the Get-Permission function, which prompts the player for per-

mission to start a new game. The rest of the statements in the main processing section are

embedded within a while loop that is responsible for prompting the player to play another

game.

That’s everything. Assuming that you did not make any typing mistakes when you keyed in

the code statements that make up the PowerShell Blackjack game, everything should work

as expected. Go ahead and give the game a run through. Once you have verified that every-

thing works like it is supposed to, try feeding the game invalid input to ensure that the

game handles it correctly. Once you are confident that all is well, share a copy with a friend

and ask for feedback.

Summary
In this chapter you were introduced to a number of different ways that you can use Windows

PowerShell to access and automate Windows resources. In addition, you learned how to use

WMI to collect system information and to programmatically interact with the Windows reg-

istry. You also learned how to work with Windows processes, services, and event logs as well

as how to instantiate new objects using .NET classes and the common object model. You

even learned how to alter the presentation of text color in order to enhance the output gen-

erated by cmdlets and script commands.

Now, before you move on to Chapter 10, “Debugging PowerShell Scripts,” consider setting

aside a little extra time to enhance the PowerShell Blackjack game by addressing the fol-

lowing list of challenges.

Windows PowerShell Programming for the Absolute Beginner

299Chapter 9 • Basic System Administration

C H A L L E N G E S

1. Using the Tic-Tac-Toe game for inspiration, consider creating text-based graphic
representations of each card assigned to the player and the computer, thus
allowing the player to view her hand as if she was handling real cards.

2. Consider experimenting with the Write-Host cmdlet’s –ForegroundColor and
–BackgroundColor parameters to make the game more visually appealing.

3. In this implementation of Blackjack, the player and the computer both start with
a single card. However, in most blackjack games, players start out with two
cards. Modify the game to correct this deficiency. Also, in addition to reporting
the total value of the player’s hand, consider displaying the value of each card
that is assigned.

4. Modify the opening welcome screen by adding a text-based graphic that dis-
plays an ace of spades and a 10 of hearts, thus immediately identifying the game
and its purpose to players when it first starts up.

5. As currently written, the PowerShell Blackjack game is a little short on descrip-
tive text. Consider adding instructions where you think it will be beneficial.
Also, consider creating a help screen that players unfamiliar with the game can
view to learn how the game is played.

6. Consider adding logic to the game that tracks the total number of games won,
lost, or tied and display this information either at the end of the game or upon
demand.

7. Currently, the game is hard-coded to treat a randomly generated value of 1 as an
ace, automatically assigning it a value of 11. Considering giving the player the
option of electing to treat aces as having a value of either 1 or 11.

This page intentionally left blank

Debugging
PowerShell Scripts

10
C H A P T E R

I
f there is one inevitability in programming, it is that errors can and will

occur. No matter how long you have been programming or how good you

may be, errors are going to happen. Windows PowerShell scripting is no

exception. Fortunately, as you will learn in this chapter, there are many tools at

your disposal that you can use to track down, identify, and fix errors. In this chap-

ter you will learn how to create error handlers that respond to errors and take

appropriate action. In addition to showing you how to debug your PowerShell

scripts, this chapter will also teach you how to develop your final PowerShell script,

the PowerShell Game Console.

Specifically, you will learn how to:

• Read and analyze syntax, runtime, and logical errors

• Alter the logical execution of a script when cmdlet errors occur

• Create error handlers that trap and respond to errors

• Trace the logical flow of your PowerShell scripts and track variable values

C H A P T E R

Project Preview: The PowerShell Game Console
In this final chapter of the book, you will learn how to develop your final Windows Power-

Shell computer game, the PowerShell Game Console. This script will provide you with a con-

sole view of all your Windows PowerShell games, allowing you to view and access them as a

list of menu items. When started, the PowerShell Game Console will display a list of all

the PowerShell scripts that it finds in the folder that you have used to store your Windows

PowerShell games, as demonstrated in Figure 10.1.

Once started, the selected PowerShell game runs within the same window as the game con-

sole, as demonstrated in Figure 10.2.

Each time the player finishes playing a selected PowerShell game, the game ends and the

PowerShell Game Console reappears, prompting the player to select another game to play.

When done playing games, the player closes the PowerShell Game Console by pressing the

Q key and pressing the Enter key. In response, the screen shown in Figure 10.3 is displayed.

302 Windows PowerShell Programming for the Absolute Beginner

Figure 10.1

The PowerShell
Game Console
lets you start

games by
entering their
menu number.

Figure 10.2

The player has
used the game

console to start
the Tic-Tac-Toe

game.

Understanding PowerShell Errors
As you have doubtless seen many times, Windows PowerShell scripts are subject to many dif-

ferent types of errors. For example, errors can occur if a script attempts to access a network

resource that is not available, or if you make a typo when keying in a script statement, or if

you make a mistake in the logic used to make your script run. Each of these three types of

errors fall into a distinct category of errors, as outlined in the following list.

• Syntactical Error. An error occurring as a result of not following the syntax require-

ments of the PowerShell scripting language.

• Runtime Error. An error that occurs when a script attempts to perform an illegal

action such as the division of a number by zero.

• Logical Error. An error that occurs when a script produces an unexpected result as the

results of faulty programming logic and not as the result of a syntax or runtime error.

Each of these types of errors is explored further in the sections that follow.

Syntax Errors
Syntax errors occur when a script is initially loaded for execution. These types of errors

occur when you make typos or if you fail to follow the syntax requirements of a command

or cmdlet. For example, a syntax error will occur if you forget to provide the required clos-

ing double quotation marks at the end of a Write-Host statement, as demonstrated here.

Write-Host “once upon a time there were three little pigs.

When executed, this statement will generate the following error, preventing the script from

executing.

303Chapter 10 • Debugging PowerShell Scripts

Figure 10.3

The closing
screen of the

PowerShell game.

304

Encountered end of line while processing a string token.

At C:\MyScripts\xxx.ps1:11 char:12

+ Write-Host “ <<<< once upon a time there were three little pigs.

Syntax errors prevent PowerShell scripts from compiling and running. As such, they are easy

to identify and fix. For example, if you examine the error message that was generated by the

previous statement, you will see that it explicitly identifies the location and the text of the

statement that caused the error, making it easy to locate and fix.

Runtime Errors
Unlike syntax errors, runtime errors are not caught and flagged when your PowerShell

scripts are first started. Instead, they occur only when the statements that generate them are

executed. As a result, unless you carefully test out of all the functionality of your PowerShell

scripts, it is easy to let runtime errors sneak by. As a result, you run the risk that other people

with whom you share your scripts will find your errors.

Some runtime errors are difficult if not impossible to avoid. For example, a computer’s net-

work connection may go down or one of its hard drives may crash. Still, most runtime errors

can be eliminated by carefully testing every aspect of your PowerShell scripts, including

seldom-used functionality. Runtime errors can also be handled by taking care to incorporate

logic within your scripts to prevent errors from occurring. For example, if your script

accepts user input, you should add extra programming logic to validate the user’s input,

rejecting any input that is not valid. Likewise, if you are developing a PowerShell script that

is supposed to copy or move files, take the time to add the logic required to first ensure

that the files to be manipulated do, in fact, exist.

Another way to locate and track down runtime errors is to test your PowerShell scripts

under various conditions. For example, try to input invalid data to see if your script handles

it correctly. If your script needs to access network resources, try disconnecting your com-

puter’s network connection in the middle of your script’s execution. Proper testing is the

key to the elimination of most runtime errors.

As an example of a typical runtime error, take a look at this.

$x = 10

$y = 0

$z = $x / $y

In this example, two variables have been declared and assigned values. Next, an attempt is

made to divide one number by the other. The problem with this example is that it is illegal

to divide any number by zero. As a result, when executed, this example will generate the fol-

lowing error.

Windows PowerShell Programming for the Absolute Beginner

Attempted to divide by zero.

At C:\MyScripts\xxx.ps1:13 char:10

+ $z = $x / <<<< $y

Had the values of $x and $y been provided by the user, instead of hard-coded, this problem

would have been avoided by validating the user’s input and rejecting a value of 0 for the

denominator.

Logical Errors
Unlike syntax and runtime errors, logical errors do not result in the display of error mes-

sages and are therefore often difficult to track down. Because logical errors represent a

breakdown of the programming logic used to develop some part of a PowerShell script, the

best way to deal with them is to prevent them from happening in the first place by carefully

planning out your script’s logic before you start writing it.

An example of a logical error is an endless loop, where a loop is started without providing a way

to break out of it. Another example of a logical error is when you enter in the wrong logic when

trying to perform a task. For example, suppose you wanted to write a script that added two

numbers together. In doing so, suppose you inadvertently keyed in the following statement.

#The total number of units sold is calculated by adding $x and $y

$z = $x - $y

Obviously, the intention here was to add the values of $x and $y together. However, instead,

the value of $y will be subtracted from $x. As a result, if the following statement was executed

later in the script, unexpected results would be displayed.

Write-Host “Total number of units sold = $z”

In this example, instead of $z equaling 15, it has been set equal to 5, as shown below.

Total number of units sold = 5

In this example, the problem did not lie in the logic that was applied to the development of

the script. Instead, the problem most likely occurred by accident, when the programmer

entered in the – operator in place of the + operator. Thus, to catch logical errors, it is also

important that you take the time to carefully analyze the results generated by your scripts

to ensure that they are working as expected. Otherwise, your PowerShell scripts will do

exactly what you tell them to do, even if it is not what you really wanted them to do. Logi-

cal errors can also be prevented by writing PowerShell scripts in a modular fashion, using

functions to organize and store related statements. This allows you to test your scripts a

module at a time as you are building them.

305Chapter 10 • Debugging PowerShell Scripts

306

Terminating Versus Non-Terminating Errors
In addition to syntax, runtime, or logical errors, Windows PowerShell errors can also be

classified as terminating and non-terminating. A non-terminating error is an error that does

not prevent the script from continuing its execution. For example, the following script shows

a non-terminating error. When executed, an error message is displayed when the third

statement is executed. However, the script continues executing, allowing the remaining

statements to execute.

$x = 10

$y = 0

$z = $x / $y

Write-host “I got here anyway!”

A terminating error, as you would expect, is an error that halts the execution of the Power-

Shell script. As you will see later in this chapter, Windows PowerShell provides you with the

ability to override the default termination behavior for cmdlet errors.

Dissecting the Structure of Error Messages
Anytime an error occurs, PowerShell stores information about the error in an object called

ErrorRecord. This object provides you with access to a number of properties, each of which

stores information about the error. These properties include:

• Exception. This property doubles as an object with its own properties. One of its

properties is Message. By referencing Exception.Message, you can display a description

of an error message

• CategoryInfo. This is a high-level category that classifies the type of error that has

occurred.

• ErrorDetails. When available, this property provides additional detailed information

about an error.

• TargetObject. When available, this property identifies the object that was active

when the error was generated.

PowerShell stores information about the last error to occur (i.e., the most recent ErrorRecord

object) in a special variable named $error. $error is an array. The last error is found in

$error[0]; the second to last error in $error[1]; and so on. For example, using the properties

belonging to the ErrorRecord object, you can easily display a test message containing the

error message or the most recent error using the following statement.

Write-Host “ Error: “ + $error[0].exception.message

Windows PowerShell Programming for the Absolute Beginner

Telling Windows PowerShell How to React to Errors
By default, Windows PowerShell will continue to run your PowerShell scripts in the event a

non-terminating error occurs. You can change this behavior by modifying the value

assigned to the special $ErrorActionPreference variable. For example, you could instruct

Windows PowerShell to stop executing a PowerShell script in the event a non-terminating

error occurs by adding the following statement at the beginning of the script.

$ErrorActionPreference = “Inquire”

Windows PowerShell allows you to assign any of the values shown in Table 10.1 to the

$ErrorActionPreference special variable.

If you want, you can specify an optional –ErrorAction argument at the end of the cmdlet

statements in order to temporarily override the default global ErrorAction setting. For

example, by default a script containing the following statement will continue executing in

the event the cmdlet is unable to connect to the specified network computer.

Get-WmiObject Win32_ComputerSystem -computername HP1

The script continues executing because the default value of the $ErrorActionPreference

variable is Continue. Thus, the previous statement will result in an error message being dis-

played, as demonstrated here, but the script will continue running.

Get-WmiObject : The RPC server is unavailable. (Exception from HRESULT: 0x80070

6BA)

At C:\MyScripts\xxx.ps1:12 char:14

+ Get-WmiObject <<<< Win32_ComputerSystem -computername HP1

By specifying an –ErrorAction value of Stop at the end of the cmdlet statement, you can

instruct the script to instead cease execution.

Get-WmiObject Win32_ComputerSystem -computername HP1 -ErrorAction Stop

307Chapter 10 • Debugging PowerShell Scripts

Value Description

Continue Generates an error but allows the script to continue executing

Stop Generates an error and terminates the script

SilentlyContinue Suppresses the display of the error and allows the script to continue executing

Inquire Generates an error and asks the user how to proceed

TA B L E 10 .1 P O W E R S H E L L E R R O R A C T I O N A R G U M E N T S

308

When executed, the previous statement generates the following error message and the

script stops running.

Get-WmiObject : Command execution stopped because the shell variable

“ErrorActionPreference” is set to Stop: The RPC server is unavailable. (Exception

from HRESULT: 0x800706BA)

At C:\MyScripts\xxx.ps1:12 char:14

+ Get-WmiObject <<<< Win32_ComputerSystem -computername HP1 -ErrorAction stop

By specifying SilentlyContinue when executing the –ErrorAction argument, you can prevent

errors from being displayed, thus keeping them from view by the user, as demonstrated here.

Get-WmiObject Win32_ComputerSystem -computername HP1 –ErrorAction

SilentlyContinue

If desired, you can specify Inquire as the value of –ErrorAction, as demonstrated below.

Get-WmiObject Win32_ComputerSystem -computername HP1 -ErrorAction inquire

If an error occurs when this statement executes, the Windows PowerShell will display the

following prompt.

The RPC server is unavailable. (Exception from HRESULT: 0x800706BA)

[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help

(default is “Y”):

When you assign a value of Inquire to –ErrorAction, Windows PowerShell responds by dis-

playing the list of choices defined in Table 10.2.

Creating Trap Handlers

Windows PowerShell Programming for the Absolute Beginner

Option Value Description

Y Yes Allows the script to continue and process the error as
appropriate

A Yes to All Automatically assumes a value of yes for any further inquiries

H Halt Command Stops the execution of the cmdlet

S Suspend Pauses the current pipeline and opens a new sub-shell. Allows
you to troubleshoot before typing exit to close the sub-shell
and then returns to decide which option you want to select
once pipeline processing is resumed.

? Help Displays an explanation of the effects of each of the available
options.

TA B L E 10 . 2 P O W E R S H E L L E R R O R A C T I O N I N Q U I R Y O P T I O N S

Whenever an error occurs, Windows PowerShell generates an exception. This exception can

be trapped by an exception handler or trap handler, thus giving programmers the ability to add

logic to their PowerShell scripts that can respond to errors. An error trap can even override

the ErrorPolicy setting. Trap handlers also have access to the ErrorRecord object through the

$_ special variable.

A trap handler is a mechanism that catches errors raised during script execution, giving you

the opportunity to analyze and hopefully recover from errors. The syntax required to set up

a trap handler is outlined here.

Trap [Exception] {

Script statements

.

.

.

Return [Value] | Continue | Break

}

Here, Exception is an optional placeholder for an argument representing a specific type of

error to be trapped. When specified, the trap handler will ignore any errors that occur and

do not match the specified exception type. If omitted, the trap handler will fire for any

exception that occurs within its scope. You can include any number of script statements

within a trap handler. Typically, you would use $_ to access information about the exception

and determine what action, if any, is appropriate to take as well as to change the value of

ErrorPolicy when appropriate. Lastly, trap handlers can specify any of three optional termi-

nation options.

Return[Value] will exit the current scope and return the specified value. Continue tells

PowerShell to continue script execution beginning with the statement that comes immedi-

ately after the statement that generated the error. Break terminates the execution of the

current scope. If none of these options is returned, PowerShell returns the value of $_.

It is important to remember that Windows PowerShell provides for different scopes. When

a script begins executing, it creates its own scope. Within the script, any functions that are

defined generate their own sub-scopes. If you place a trap handler within a function and an

error occurs within the function, the function’s trap handler will be executed. If the func-

tion does not have its own trap handler, the error will be passed back to the parent scope

and will be processed by a trap handler, if present, within this scope.

If you place a trap handler within a function and an error occurs, specifying an option of

Continue will tell PowerShell to continue executing the next statement within the function.

309Chapter 10 • Debugging PowerShell Scripts

310

Break instructs PowerShell to terminate the current scope, allowing the parent scope to

handle the error (it the parent scope has a trap handler defined). Return [Value] instructs

PowerShell to terminate the current scope and to return whatever value you specify to the

parent scope.

If you want, you can define multiple trap handlers within each scope. In this
case, each trap handler is executed in the order that it was defined, but only the
optional Return[Value]/Continue/Break statement in the last trap handler is
executed.

To get a better understanding of how to set up trap handlers, take a look at the following

example.

trap {

Clear-Host

write-Host “`nAn unexpected error has occurred. Please record the following”

write-host “message and notify the Help Desk.`n`n”

}

#The following statement generates a runtime error

$x = 10

$y = 0

$z = $x / $y

In this example, a trap has been set up to trap any error that occurs within the current

scope. When executed, the trap handler displays a user-friendly error message, instructing

the user to contact the Help Desk and report the error. The statements that follow generate

a runtime error, resulting in the execution of the trap. When executed the following error

is generated.

An unexpected error has occurred. Please record the following

message and notify the Help Desk.

Attempted to divide by zero.

At C:\MyScripts\xxx.ps1:13 char:10

+ $z = $x / <<<< $y

TRICK

Windows PowerShell Programming for the Absolute Beginner

This trap handler will execute for any error that occurs within the current scope. If you

want, you could modify the trap handler so that it only executes when a specific type of

error occurs, as demonstrated below.

trap [DivideByZeroException] {

Clear-Host

write-Host “`nAn unexpected error has occurred. Please record the following”

write-host “message and notify the Help Desk.`n`n”

Break

}

Here, the trap handler has been modified so that it will execute only in the event a

DivideByZeroException error occurs. In addition, the Break option has been added to the end

of the trap handler in order to instruct PowerShell to terminate the current scope and allow

the parent scope’s trap handler, if present, to handle the error.

Tracing Script Execution
Often, all that you will need to track down and fix an error is the text of the error message

that PowerShell generates. However, sometimes error messages alone do not provide enough

information, especially when you are trying to track down a logical error. To track down and

eliminate some problems, it often helps to know the order in which things are executing

within your PowerShell scripts as well as the value of variables as they are accessed and

changed.

Displaying Output Status Information and Tracking Variable Values
One way of keeping an eye on the inner working of your Windows PowerShell scripts is to

place Write-Host statements at strategic points within your scripts. For example, you might

display a statement at the beginning and end of each function that notifies you when the

function is started and when it ends. You might also want to use the Write-Host statement

to display the value of key variables so that you can keep an eye on their values as they are

modified and referenced.

Because of the speed with which PowerShell processes script statements, it is also often help-

ful to place Read-Host statements after your Write-Host statements in order to pause script

execution and give you time to examine the data that is displayed. For example, you might

want to add Write-Host statements following function calls in order to be able to visually

validate that the data returned by the function is what you anticipated.

311Chapter 10 • Debugging PowerShell Scripts

312

To see an example of how you might make use of the Write-Host and Read-Host cmdlets to

track the execution flow of a PowerShell script and keep an eye on variable values, take a

look at the following example.

function Display-Message {

param($x)

Write-Host $x

Write-Host “Function Display-Host now terminating”

}

Write-Host “Starting Script execution”

ForEach ($i in 1..5) {

Write-Host “Calling the Display-Message function”

Write-Host “and passed a value of $i”

Read-Host

Display-Message $i

}

When executed, this script displays the following messages and then pauses.

Starting Script execution

Calling the Display-Message function

and passed a value of 1

At this point you know that the script is about to call on the Display-Message function and

that the value of $i is equal to 1. As soon as the Enter key is pressed, the following output is

displayed.

Function Display-Host now terminating

Calling the Display-Message function

and passed a value of 2

Again, you can see that the Display-Host function is about to be called and the value of $i

is now 2. As this simple example shows, you can effectively track the execution of small

scripts or parts of larger scripts using the Write-Host and Read-Host cmdlets in order to keep

an eye on variable values. This will allow you to verify that things are executing in the order

you expect and to ensure that variables are being assigned the proper values.

If you do not want to see text messages, you might instead take advantage of the Write-Host

cmdlet’s ability to make beep sounds to let you know when something of interest has

occurred. Once you have managed to track down and fix any errors, you can either remove

the extra debugging statements that you added to the script or you can comment them out,

leaving them in place should you need to debug the script again at a later date.

Windows PowerShell Programming for the Absolute Beginner

Using PowerShell’s Debug Mode
While adding strategically placed Write-Host and Read-Host cmdlets throughout a script can

be helpful in tracking down problems, this debugging technique is only suitable for small

scripts or for limited use within larger scripts. For larger scripts, you will want to use the

Set-PSDebug cmdlet to enable Windows PowerShell’s debug mode.

The Set-PSDebug cmdlet accepts a number of optional parameters, which allow you to spec-

ify the level of detail and control you want during the debug session. One parameter is

–Trace, which tells the cmdlet how much debug information you want to see. The following

choices are available.

• –Trace 0. Turn tracing off.

• –Trace 1. Display each script statement that is executed.

• –Trace 2. Display information on variable values and function calls and display each

script statement that is executed.

Another optional Set-PSDebug parameter is –Step, which, when specified, tells the cmdlet to

pause and display the following list of options before executing each line in the script.

• Yes. Execute the next statement.

• Yes to All. Execute all remaining statement with additional prompting.

• No. Exits the script.

• No to All. Exits the script.

• Suspend. Pauses script execution.

To better learn how to work with the Set-PSDebug cmdlet in order to debug your PowerShell

scripts, let’s take a look at a few examples. For starters, create and save the following

PowerShell script as PSTest.ps1.

function Display-Message {

param($x)

Write-Host $x

}

ForEach ($i in 1..5) {

Display-Message $i

}

Next, run the script to make sure that it correctly displays a sequence of numbers from 1 to 5,

as shown on the next page.

313Chapter 10 • Debugging PowerShell Scripts

314

1

2

3

4

5

Next, let’s enable PowerShell debug mode by typing the following statement at the Windows

PowerShell command prompt.

Set-PSDebug -Trace 1

Here, debug mode is enabled and a trace level of 1 is established. Now, with the debug mode

established, re-run your PowerShell script. This time, you should see the following output.

DEBUG: 1+ PSTest

DEBUG: 2+ function Display-Message {

DEBUG: 11+ ForEach ($i in 1..5) {

DEBUG: 13+ Display-Message $i

DEBUG: 6+ Write-Host $x

1

DEBUG: 13+ Display-Message $i

DEBUG: 6+ Write-Host $x

2

DEBUG: 13+ Display-Message $i

DEBUG: 6+ Write-Host $x

3

DEBUG: 13+ Display-Message $i

DEBUG: 6+ Write-Host $x

4

DEBUG: 13+ Display-Message $i

DEBUG: 6+ Write-Host $x

5

As you can see, setting the trace level to 1 results in the display of each statement that was

executed in addition to the output normally displayed by the script. Obviously, this level of

debugging is helpful in letting you keep an eye on the exact order in which the script state-

ment and functions are executing, allowing you to determine if events are occurring in an

order that you anticipated.

If setting the trace level to 1 does not give you enough information, you can always increase

tracing to level 2 by executing the following statement directly at the Windows PowerShell

command prompt.

Windows PowerShell Programming for the Absolute Beginner

Set-PSDebug -Trace 2

With the new debug mode setting now in place, execute the script again. This time the fol-

lowing output is displayed.

DEBUG: 1+ PSTest

DEBUG: ! CALL script ‘PSTest.ps1’

DEBUG: 2+ function Display-Message {

DEBUG: 11+ ForEach ($i in 1..5) {

DEBUG: 13+ Display-Message $i

DEBUG: ! CALL function ‘Display-Message’ (defined in file

‘C:\MyScripts\PSTest.ps1’)

DEBUG: 6+ Write-Host $x

1

DEBUG: 13+ Display-Message $i

DEBUG: ! CALL function ‘Display-Message’ (defined in file

‘C:\MyScripts\PSTest.ps1’)

DEBUG: 6+ Write-Host $x

2

DEBUG: 13+ Display-Message $i

DEBUG: ! CALL function ‘Display-Message’ (defined in file

‘C:\MyScripts\PSTest.ps1’)

DEBUG: 6+ Write-Host $x

3

DEBUG: 13+ Display-Message $i

DEBUG: ! CALL function ‘Display-Message’ (defined in file

‘C:\MyScripts\PSTest.ps1’)

DEBUG: 6+ Write-Host $x

4

DEBUG: 13+ Display-Message $i

DEBUG: ! CALL function ‘Display-Message’ (defined in file

‘C:\MyScripts\PSTest.ps1’)

DEBUG: 6+ Write-Host $x

5

As you can see, you now not only see each statement as it is executed, but you are also able

to identify by name functions as they are called as well as variable values each time they are

modified or referenced.

If you want, you can specify the –Step parameter when setting up debug mode, as demon-

strated here.

315Chapter 10 • Debugging PowerShell Scripts

316 Windows PowerShell Programming for the Absolute Beginner

Set-PSDebug -Step

When specified, –Step automatically sets a trace level of 1. To test this debugging option out,

enter the previous statement at the Windows PowerShell command prompt and press Enter

and then run your script again. This time, PowerShell pauses the execution of your script

before each statement is executed, as demonstrated here.

Continue with this operation?

1+ xxx

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help

(default is “Y”):

You can now specify the appropriate response to continue debugging your PowerShell script.

To learn more about the Set-PSDebug cmdlet, type Get-Help Set-PSDebug at the
PowerShell command prompt.

Back to the PowerShell Game Console
Okay, it is time to turn your attention back to the chapter’s main project, the PowerShell

Game Console. In this project, you will create a text-based game console that displays a

menu of PowerShell game scripts, allowing players to start and play PowerShell games by

entering their menu number. Once players finish playing a selected game, the game ends

and the game console reappears, prompting the player to select another game to play.

Designing the Game
The PowerShell Game Console builds its menu on the fly based on the contents stored in the

folder where your PowerShell scripts are stored. Although the script automatically filters

out the display of any non-PowerShell script files, it is up to you to ensure that the folder

contains only game scripts. Other PowerShell scripts, including the PowerShell game con-

sole itself and your standard PowerShell template script, should not reside in the folder.

When executed, the PowerShell Game Console displays a numbered list of all the game

scripts in the PowerShell game folder and displays a prompt that allows players to start

scripts based on their assigned menu number. As you can see, the overall logical flow of the

PowerShell script is fairly simple. To set it up, you will complete its development in six steps,

as outlined here:

1. Create a new script using the PowerShell script template.

2. Define and initialize script variables.

HINT

3. Create the Get-GameListing function.

4. Create the Write-MenuList function.

5. Create the End-ScriptExecution function.

6. Develop the script’s primary controlling logic.

Creating a New Script File
The first step in the creation of the PowerShell Game Console script is the creation of a new

script file named GameConsole.ps1. Create this script file using your PowerShell script tem-

plate file and then modify the new script file as shown here.

#

Script Name: GameConsole.ps1 (The PowerShell Game Console)

Version: 1.0

Author: Jerry Lee Ford, Jr.

Date: January 1, 2007

Description: This PowerShell script provides a listing of PowerShell

game scripts and allows the player to play any game by

entering its menu number.

Initialization Section

Functions and Filters Section

Main Processing Section

Defining and Initializing Script Variables
This script will use an array named $menuList to store a list of all the PowerShell scripts

located in the C:\MyScripts folder. In addition, the controlling logic outlined in the script’s

main processing section will be controlled by a while loop that monitors the value of

$playAgain in order to determine when to halt the execution of the PowerShell Game Con-

sole. Add the following statements to the script file’s initialization section in order to define

and initialize these two variables.

317Chapter 10 • Debugging PowerShell Scripts

318 Windows PowerShell Programming for the Absolute Beginner

$menuList = @() #Stores an array containing information about script games

$playAgain = “True” #Controls the execution of a loop that controls game

#execution

Creating the Get-GameListing Function
The PowerShell Game Console script has a number of custom functions, each of which is

responsible for performing a particular task. The code for the first function is shown below.

This function, named Get-GameListing, is responsible for retrieving a list of files stored

in the C:\MyScripts folder and then storing the list in the $gameList array. Note that the

ForEach-Object cmdlet is used to filter out any non-PowerShell script before the resulting list

is stored in the $gameList array. Once populated, the contents of the array are then returned

to the statement that called upon the function.

#This function gets the player’s permission to begin the game

function Get-GameListing {

$gameList = @() #Stores an array containing a list of PowerShell scripts

$i = 0 #Used to set the index value of the array when adding elements

#to it

Clear-Host #Clear the screen

Write-Host #Display a game console header

Write-Host “ —————————————————————————————-”

Write-Host “ Windows PowerShell Game Console” -foregroundColor darkred

Write-Host “ —————————————————————————————-”

Set-Location C:\MyScripts #Specify the location of the game scripts

#Load an array with a list of all the PowerShell scripts in the

#specified folder

$gameList = Get-ChildItem . *.ps1 # | ForEach-Object -process {$i++;

$gameList[$i] = $_.Name }

$gameList = Get-ChildItem . *.ps1 # | ForEach-Object -process `

{$i++; $gameList[$i] = $_.Name}

$gameList #Return the contents of the array to the calling statement

}

319Chapter 10 • Debugging PowerShell Scripts

You will need to customize your version of this script by substituting the path
and name of the folder where you have chosen to store your Windows
PowerShell games. You will also want to make sure that this folder only con-
tains game scripts and not other PowerShell scripts that you may have devel-
oped. You will also need to add this folder to your default path as described
back in Chapter 1, “Introducing Windows PowerShell.”

Take note of the use of the ; (semicolon) character to separate $i++ from
$gameList[$i] = $_.Name in the statement that loads the $gameList array. Here,
the ; character servers as an end-of-line marker, allowing you to place two
separate statements on a single line.

Creating the Write-MenuList Function
The next function to be added to the script is the Write-MenuList function, which is outlined

below. This function is responsible for taking the list of filenames passed to it and using

them to build a numbered list of menu items.

#This function displays a menu listing of PowerShell games

function Write-MenuList {

param($list) #The list of games to be displayed is passed as an array

$Counter = 0 #Used to number each menu item

Write-Host “”

ForEach ($i in $list) { #Iterate for each script stored in the array

$counter++ #Increment the counter by 1

if ($counter -lt 10) { #Format the display of the first 9 scripts

Write-Host “ $counter. $i” -foregroundColor blue

}

else { #Format the display of all remaining scripts

Write-Host “ $counter. $i” -foregroundColor blue

}

}

Write-Host “`n ————————————————————————————-”

}

TRICK

HINT

320

As you can see, the list of filenames passed to this function is temporarily stored in an array

named $list, which is then processed using a ForEach loop. Upon each iteration of the loop,

a filename is displayed, preceded by a number that uniquely identifies the file (i.e., as spec-

ified by the value of $i).

Writing the End-ScriptExecution Function
The last function to be added to the script is the End-ScriptExecution function, shown below.

This function is responsible for displaying a message that thanks the player for using the

PowerShell Game Console and then, after a three-second pause, clears the screen.

function End-ScriptExecution {

Clear-Host #Clear the screen

Write-Host “`n Thank you for using the Windows PowerShell Game Console”

Start-Sleep 3 #Pause the execution of the script for 3 seconds

Clear-Host #Clear the screen

}

Developing the Programming Logic for the Main Processing Section
Now it is time to wrap things up by adding the programming logic in the main processing

section that will manage the overall execution of the PowerShell Game Console. The script

statements that make up this logic are outlined here.

$response = 0 #Stores player input

#Continue playing new games until the player decides to close the

#game console

while ($playAgain -eq “True”) {

#Call the function that generates an array containing a list of

#game scripts

$menuList = Get-GameListing

#Call the function that converts the contents of the array into a list

#of menu items

Write-MenuList $menuList

Windows PowerShell Programming for the Absolute Beginner

321Chapter 10 • Debugging PowerShell Scripts

#Prompt the player to pick a game to play

$response = Read-Host “`n Enter the menu number for a game or Q to quit”

#Prepare to close the game console when the user decides to quit

if ($response -eq “Q”) {

$playAgain = “False” #Modify variable value in order to halt the loop

continue #Repeat the loop

}

#Convert the player’s input to an integer and then validate the

#player’s input

if ([int]$response -lt 1) { Anything below 1 is not a valid menu number

Clear-Host #Clear the screen

Write-Host “`n `a`aInvalid selection.”

Read-Host #Pause the script until the player presses the Enter key

continue #Repeat the loop

}

if ([int]$response -gt $menuList.length) {

Clear-Host #Clear the screen

Write-Host “`n `a`aInvalid selection.”

Read-Host #Pause the script until the player presses the Enter key

continue #Repeat the loop

}

Invoke-Expression $menuList[$response -1] #Execute the selected script

Clear-Host #Clear the screen

}

End-ScriptExecution

As you can see, a while loop has been defined to control the overall execution of the script.

This loop executes until the player enters a menu command of Q, signaling that it is time to

close the console. Upon each iteration of the loop, the Get-GameListing function is executed

in order to generate a list of games to be displayed. Next, the Write-MenuList function is exe-

cuted in order to display the list of PowerShell scripts that has been assembled. Next the

player is prompted to select a game. The player’s input is then evaluated. Once a valid menu

selection has been specified, the Invoke-Expression cmdlet is used to start the specified

PowerShell game by specifying the array index number of the selected menu item.

322

The Invoke-Expression cmdlet provides you with the ability to execute other
PowerShell scripts by passing the cmdlet the name and path of the script.

The Final Result
Well, that is it. If all has gone according to plan, your version of the PowerShell Game Con-

sole should be ready to run. If you have made a few typos and are getting errors, use the

debugging information presented in this chapter to track down the errors.

Summary
Congratulations on completing the final chapter of this book. This chapter has helped to

round out your understanding of Windows PowerShell programming by teaching you how

to track down and fix problems that inevitably occur as part of the script-development

process. You learned how to override the manner in which PowerShell responds to cmdlet

errors. You learned how to develop error handlers that trap and respond to errors. You also

learned how to trace the logical execution flow of your PowerShell scripts as well as how to

keep an eye on the values stored in variables at various stages of script execution.

Before you put down this book and move on to tackle other opportunities, why not spend a

few final minutes tackling the following list of challenges?

HINT

Windows PowerShell Programming for the Absolute Beginner

C H A L L E N G E S

1. Modify the PowerShell Game Console to give the player the ability to start new
games by entering the name of a PowerShell script in addition to specifying its
menu number.

2. Currently, the name and path of the folder where PowerShell game scripts are
stored is hard-coded in the script itself. Consider enhancing the Windows Power-
Shell Game Console to use the registry to store the name and path of the game.
In addition, considering giving the player the option of specifying the name and
path of a different folder where PowerShell script games might be stored.

3. If you have a website, you might consider adding an option to the PowerShell
Game Console that allows the player to automatically visit your website in order
to check on the availability of new PowerShell script games. This can be accom-
plished using the New-Object cmdlet and COM to load your website using Internet
Explorer.

Part

Appendix A: What’s on the
Companion Website?

Appendix B: What Next?

Appendices

IV

This page intentionally left blank

What’s on the
Companion Website?

A
C H A P T E R

T
o become proficient with any programming language, you must spend

time working with the language, developing new scripts, and experi-

menting with different programming techniques. Obviously, this means

dedicating yourself to the development of new PowerShell scripts in an effort to

push you into tackling more and more challenging tasks. It also helps to have a

collection of source code that you can use as the basis for your new scripts.

Assuming that you have created each of the sample game scripts presented in

this book as you’ve gone along, you now have a good starter set of scripts from

which you can learn and expand. However, if you did not get the chance some-

where along the way to create one or more of the sample game scripts outlined

in this book, you are in luck. Copies of every game script covered in this book

have been uploaded to the book’s companion website and are ready for you to

download. The website address is www.courseptr.com/downloads. From there,

enter the title of this book to locate the files.

I wrote this book with the intention that you would read it from cover to cover.

If you read this book in this manner, then you should already have a good idea

of what each game script does. However, just in case you found yourself skipping

around a bit and did not review each chapter’s game script, I have provided a

summary of what each script does in Table A.1.

A P P E N D I X

www.courseptr.com/downloads

326 Windows PowerShell Programming for the Absolute Beginner

Chapter Application Description

Chapter 1 Knock Knock Joke This script provides a gentle introduction to
PowerShell scripting by demonstrating the steps
involved in creating and executing a scripts that
tells knock-knock jokes.

Chapter 2 The Story of the Three Amigos This script demonstrates how to collect user
input and use it in the creation of a mad-lib
style story.

Chapter 3 PowerShell Fortune Teller This script provides random answers to
questions asked by a player, providing different
answers based on the time of day.

Chapter 4 The Seinfield Trivia Quiz This script demonstrates how to store and
retrieve data in variables in order to build a trivia
game that tests the player’s knowledge of
Seinfield trivia.

Chapter 5 Guess My Number This script demonstrates the implementation of
conditional logic through the development of a
number guessing game in which the player is
challenged to guess a secret number in the
lowest number of guesses.

Chapter 6 Rock, Paper, Scissors This script re-creates a command-line version of
the classic children’s game, demonstrating how
to control script execution with a loop.

Chapter 7 PowerShell Hangman This script demonstrates how to organize scripts
using functions through the development of a
hangman-style word-guessing game.

Chapter 8 PowerShell Tic-Tac-Toe This script re-creates the classic children’s
Tic-Tac-Toe game through the development of
a two-player PowerShell game.

Chapter 9 PowerShell Blackjack This script demonstrates how to create a
Blackjack-styled card game that pits the player
against the computer.

Chapter 10 PowerShell Game Console This script brings together all of the
programming concepts covered in this book
through the creation of a game console that
provides the player with easy access to the
book’s PowerShell games.

TA B L E A .1 P O W E R S H E L L S C R I P T F I L E S L O C A T E D

O N T H E C O M P A N I O N W E B S I T E

What Next?
B

A P P E N D I X

A
s you no doubt have concluded after reading this book, Microsoft Power-

Shell provides a robust, powerful scripting environment that goes well

beyond traditional shell scripting. Windows PowerShell provides an

entirely new programming language designed from the ground up to integrate

with and leverage the capabilities provided by the .NET Framework. As this book

has demonstrated, Microsoft PowerShell is a great programming language for

first-time programmers and computer hobbyists. Yet, it is also powerful enough

to satisfy the needs of professional programmers.

While you have already learned a great deal about how to program using Win-

dows PowerShell scripting, there is still a lot more to be learned. Therefore,

rather than viewing this book as the end of your Windows PowerShell scripting

education, you should view it as the beginning. To become a truly effective

Microsoft PowerShell programmer, you must continue to read and learn as much

as possible. To help get you started, I have provided this appendix, where you will

find an assortment of useful Windows PowerShell information. It includes infor-

mation about a PowerShell IDE, assorted PowerShell reading materials, websites,

mailing lists, and blogs.

328

Windows PowerShell IDEs
As I was writing this book, there were two Windows PowerShell IDEs under development.

These PowerShell IDEs provide a much better script-editing and testing environment than

simply working with Notepad and the command prompt and can significantly improve your

code-development experience.

The first PowerShell IDE is PowerShellIDE, available as a free download at www.power-

shell.com/. PowerShell IDE provides a long list of features, including:

• Statement color coding

• Direct command-line access

• Debugging features including support for breakpoints

• Context aware code completion

• Variable and property views

Figure B.1 shows an example of PowerShellIDE in action.

Windows PowerShell Programming for the Absolute Beginner

Definition
An IDE, or integrated development environment, is a graphical software-development
tool that integrates a source-code editor with other application-development tools to
aid in the creation of scripts or applications.

Figure B.1

The
PowerShellIDE

manages the
display of script

code, output, and
variable and

property values.

www.powershell.com/
www.powershell.com/

The other PowerShell IDE is PowerShell Analyzer, which is also available as a free download

at www.powershellanalyzer.com. Like PowerShellIDE, PowerShell Analyzer comes with lots of

bells and whistles that are designed to help you work faster and smarter when interacting

with Windows PowerShell and developing scripts. A sampling of PowerShell Analyzer features

includes:

• Statement color coding

• Direct command-line access

• Automatic display of keyword syntax

• Variable and property views

Figure B.2 shows an example of PowerShell Analyzer in action.

Recommended Reading
Because PowerShell is a brand-new technology, there were no other books on the subject

published at the time that I was writing this book. However, Microsoft provides its own

PowerShell documentation in the form of a quick start and a user guide. While first-time

programmers and individuals new to PowerShell scripting may find these guides challenging,

they will serve as an excellent next step for you once you have finished reading this book.

Information on both of these guides is provided on the following page.

329Appendix B • What Next?

Figure B.2

The PowerShell
Analyzer provides

easy access to
tools that help

simplify and
speed up script
development.

www.powershellanalyzer.com

330 Windows PowerShell Programming for the Absolute Beginner

Getting Started Guide for the Windows PowerShell
by Microsoft Corporation

Available as a PDF file in the Windows PowerShell Documentation Pack that can be down-

loaded for free at:

www.microsoft.com/downloads/details.aspx?familyid=B4720B00-9A66-430F-BD56-

EC48BFCA154F&displaylang=en

Windows PowerShell (PS) User Guide
by Microsoft Corporation

Available as a PDF file in the Windows PowerShell Documentation Pack that can be down-

loaded for free at:

www.microsoft.com/downloads/details.aspx?familyid=B4720B00-9A66-430F-BD56-

EC48BFCA154F&displaylang=en

Locating Microsoft PowerShell Resources Online
Despite its relatively new arrival, PowerShell already has a significant presence on the Inter-

net. A great deal of information is available at the websites described in the sections that

follow. You will want to visit them regularly in order to stay on top of the latest develop-

ments. You will also find that many of these websites provide access to free sample code,

which you can download and learn from.

The first place to start when you are ready to go online is Windows PowerShell’s official

website, which is located at www.microsoft.com/windowsserver2003/technologies/management/

powershell/default.mspx, as shown in Figure B.3.

Figure B.3

Microsoft’s
official

PowerShell
website.

www.microsoft.com/downloads/details.aspx?familyid=B4720B00-9A66-430F-BD56-EC48BFCA154F&displaylang=en
www.microsoft.com/downloads/details.aspx?familyid=B4720B00-9A66-430F-BD56-EC48BFCA154F&displaylang=en
www.microsoft.com/downloads/details.aspx?familyid=B4720B00-9A66-430F-BD56-EC48BFCA154F&displaylang=en
www.microsoft.com/downloads/details.aspx?familyid=B4720B00-9A66-430F-BD56-EC48BFCA154F&displaylang=en
www.microsoft.com/windowsserver2003/technologies/management/powershell/default.mspx
www.microsoft.com/windowsserver2003/technologies/management/powershell/default.mspx

PowerShell Websites
Microsoft also provides online access to a collection of PowerShell sample scripts as part of its

Microsoft TechNet Script Center website. These scripts demonstrate how to automate Active

Directory, the desktop, Windows applications, and many other areas. You can learn more about

and download these sample scripts at www.microsoft.com/technet/scriptcenter/scripts/msh.

The site is shown in Figure B.4.

There are plenty of other quality websites that provide information on PowerShell. For

example, you may want to check out the PowerShell Information Centre at www.reskit.net/

monad/, as shown in Figure B.5.

331Appendix B • What Next?

Figure B.4

Sample
PowerShell
scripts are

grouped by
category in the

Microsoft Script
Center Script

repository.

Figure B.5

The PowerShell
Information

Centre provides
links to

PowerShell
resources located

on the Internet.

www.microsoft.com/technet/scriptcenter/scripts/msh
www.reskit.net/monad/
www.reskit.net/monad/

332 Windows PowerShell Programming for the Absolute Beginner

Another helpful site for you to check out is channel9.msdn.com/wiki/default.aspx/Channel9.

WindowsPowerShellQuickStart. This site provides access to an online PowerShell Quick Start

guide, as shown in Figure B.6. This time-saving web page provides easy access to an online

command reference.

Windows PowerShell News Group
Sometimes there is no better way to learn than to spend time sharing information with peers.

One way to do this is via newsgroups. Microsoft sponsors a newsgroup dedicated exclusively

to the PowerShell. You will find this newsgroup at www.microsoft.com/communities/

newsgroups/list/en-us/default.aspx?dg=microsoft.public.windows.powershell. Figure B.7 pro-

vides a glimpse of this web page and the kinds of discussions that occur.

Figure B.6

The Channel9
Wiki Windows

PowerShell Quick
Start page.

Figure B.7

Microsoft’s
Windows

PowerShell
Newsgroup.

www.microsoft.com/communities/newsgroups/list/en-us/default.aspx?dg=microsoft.public.windows.powershell
www.microsoft.com/communities/newsgroups/list/en-us/default.aspx?dg=microsoft.public.windows.powershell

PowerShell Blogs
Another extremely useful place for meeting fellow programmers and exchanging questions

and answers is PowerShell blog websites. One such blog is the one belonging to the Windows

PowerShell development team, located at blogs.msdn.com/PowerShell/, as shown in Figure B.8.

As you might imagine, this site is very popular within the PowerShell community and you

will find no shortage of technical discussion going on every day.

Another good blog website is the Monad Technology Blog, which you will find at blogs.msdn.

com/monad/archive/2005/09/02/460075.aspx, as shown in Figure B.9. As the name implies,

this blog was set up back in the early days, before Microsoft gave the PowerShell its new name.

This blog’s primary benefit is that it provides you with access to discussions dating as far

back as 2005.

333Appendix B • What Next?

Figure B.8

The Windows
PowerShell

development
team’s blog.

Figure B.9

The Monad Blog.

334

One more blog worth mentioning is the PowerShelled blog at mow001.blogspot.com, as

shown in Figure B.10.

The PowerShelled blog provides a Microsoft-independent discussion area where PowerShell

programmer’s regularly interact and share experiences and help each other solve problems.

The Author’s Website
Last but not least, you may also want to check out my website, which is located at www.

tech-publishing.com, as shown in Figure B.11. In addition to learning about my other books,

you will find information about both this book and Windows PowerShell. You might also

want to stop by just to provide feedback on this book or to provide any input you may have

on how to make it better.

Windows PowerShell Programming for the Absolute Beginner

Figure B.10

The PowerShelled
blog.

Figure B.11

My website at
www.tech-

publishing.com.

www.tech-publishing.com
www.tech-publishing.com
www.tech-publishing.com
www.tech-publishing.com

Glossary

.NET Framework. A Microsoft developed framework designed to support the

development of desktop, network, and Internet-based applications and scripts.

.NET Framework Class Library. A hierarchical collection of classes that can be

used to instantiate objects based on those classes.

.ps1. The file extension used by Windows PowerShell scripts.

$_. A special variable created and maintained by Windows PowerShell that is

automatically assigned the name of the current object in the PowerShell pipeline

and, in the case of the Where-Object cmdlet, is used to reference each object in a

collection.

Add-Content. A Windows PowerShell cmdlet that adds to the content of the spec-

ified item.

Add-History. A Windows PowerShell cmdlet that adds entries to the session history.

Add-Member. A Windows PowerShell cmdlet that adds a user-defined custom

member to an object.

Add-PSSnapIn. A Windows PowerShell cmdlet that adds one or more PSSnapIn(s)

to the current PowerShell console.

Alias. A shortcut to another cmdlet.

Argument. Data passed to a script or function for processing.

Array. An indexed list of values.

Associative Array. Sometimes referred to as hash or dictionary, which provides efficient and

fast access to data stored in key-value pairs.

Classes. Templates for creating objects that Windows PowerShell can access and manipulate.

Clear-Content. A Windows PowerShell cmdlet that removes the content from an item or file

while leaving the file intact.

Clear-Item. A Windows PowerShell cmdlet that sets the item at the specified location to the

“clear” value specified by the provider.

Clear-ItemProperty. A Windows PowerShell cmdlet that removes the property value from a

property.

Clear-Variable. A Windows PowerShell cmdlet that removes a value from a variable.

Cmd.exe. The predecessor to the Windows PowerShell command shell.

Cmdlets. Predefined commands, representing .NET classes, which are designed to perform

a specific task.

Command Shell. A text-based interface that sits between the user and the operating system.

Command.com. The original Windows command line shell.

Compare-Object. A Windows PowerShell cmdlet that compares the properties of objects.

COM (Component Object Mode). A Microsoft technology that allows Windows PowerShell to

programmatically interact with and control COM objects, including ActiveX controls and

various Windows applications.

ConvertFrom-SecureString. A Windows PowerShell cmdlet that exports a SecureString to a

safe, persistent format.

Convert-Path. A Windows PowerShell cmdlet that converts the path of the item given from

a PowerShell path to a provider path.

ConvertTo-Html. A Windows PowerShell cmdlet that converts the input to an HTML table.

ConvertTo-SecureString. A Windows PowerShell cmdlet that creates a SecureString from a

normal string created by Export-SecureString.

Copy-Item. A Windows PowerShell cmdlet that calls a provider to copy an item from one

location to another within a namespace.

Copy-ItemProperty. A Windows PowerShell cmdlet that copies a property between locations.

336 Windows PowerShell Programming for the Absolute Beginner

CSV (Comma-Separated Value). A file format that is used to store comma-separated data

as records separated by newlines. This format is commonly used by applications such as

Microsoft Excel.

Do Until. A PowerShell statement that iterates until a specified condition is True.

Do While. A PowerShell statement that iterates as long as a specified condition is True.

ErrorRecord. An object that is created anytime an error occurs and which provides access

to information about the error.

Exception. An event that occurs whenever an error is discovered in a Windows PowerShell

script.

Export-Alias. A Windows PowerShell cmdlet that exports an alias list to a file.

Export-Clixml. A Windows PowerShell cmdlet that produces a Clixml representation of a

PowerShell object.

Export-Console. A Windows PowerShell cmdlet that exports the changes made to the cur-

rent console.

Export-Csv. A Windows PowerShell cmdlet that creates CSV strings from input.

Expression. A statement that is evaluated and produces a result.

Filter. A programming construct similar to a function but which is designed to more effi-

ciently process large amounts of object pipeline data.

Flowchart. A tool used by programmers to graphically depict the logical flow of all or part

of a script.

For. A PowerShell statement that iterates a set number of times.

ForEach. A PowerShell statement that iterates through all of the elements stored in a col-

lection or array.

ForEach-Object. A Windows PowerShell cmdlet that applies a script block to each object in

the pipeline.

Format-Custom. A Windows PowerShell cmdlet that formats output display as defined in

additions to the formatter file.

Format-List. A Windows PowerShell cmdlet that formats objects as a list of their properties

displayed vertically.

Format-Table. A Windows PowerShell cmdlet that formats output as a table.

337Glossary

338

Format-Wide. A Windows PowerShell cmdlet that formats objects as a table of properties.

Function. A collection of statements that is called and executed as a unit.

Get-Acl. A Windows PowerShell cmdlet that gets the access control list associated with a file

or an object.

Get-Alias. A Windows PowerShell cmdlet that returns alias names for cmdlets.

Get-AuthenticodeSignature. A Windows PowerShell cmdlet that gets the signature object

belonging to a file.

Get-ChildItem. A Windows PowerShell cmdlet that retrieves the child items for the specified

location on a drive.

Get-Command. A Windows PowerShell cmdlet that retrieves information about a command.

Get-Content. A Windows PowerShell cmdlet that returns the content from the item at the

specified location.

Get-Credential. A Windows PowerShell cmdlet that gets a credential object based on a password.

Get-Culture. A Windows PowerShell cmdlet that gets culture information.

Get-Date. A Windows PowerShell cmdlet that gets current date and time.

Get-EventLog. A Windows PowerShell cmdlet that gets EventLog data for the machine.

Get-ExecutionPolicy. A Windows PowerShell cmdlet that gets the effective execution policy.

Get-Help. A Windows PowerShell cmdlet that opens a help file.

Get-History. A Windows PowerShell cmdlet that gets a listing for the current session history.

Get-Host. A Windows PowerShell cmdlet that retrieves host information.

Get-Item. A Windows PowerShell cmdlet that gets an object that represents a namespace item.

Get-ItemProperty. A Windows PowerShell cmdlet that retrieves properties belonging to an

object.

Get-Location. A Windows PowerShell cmdlet that displays the current location.

Get-Member. A Windows PowerShell cmdlet that enumerates the properties, methods, and

property sets for the specified object.

Get-PfxCertificate. A Windows PowerShell cmdlet that gets the pfx certificate information.

Get-Process. A Windows PowerShell cmdlet that returns a list of active processes.

Get-PSDrive. A Windows PowerShell cmdlet that gets drive information.

Windows PowerShell Programming for the Absolute Beginner

Get-PSProvider. A Windows PowerShell cmdlet that returns provider information.

Get-PSSnapIn. A Windows PowerShell cmdlet that gets a list of registered PSSnapIns.

Get-Service. A Windows PowerShell cmdlet that gets a list of services.

Get-TraceSource. A Windows PowerShell cmdlet that lists trace source properties.

Get-UICulture. A Windows PowerShell cmdlet that gets the uiculture information.

Get-Unique. A Windows PowerShell cmdlet that gets the unique items in a sorted list.

Get-Variable. A Windows PowerShell cmdlet that retrieves a PowerShell variable.

Get-WmiObject. A Windows PowerShell cmdlet that creates a WMI Object or the list of WMI

classes available on the system.

Global Scope. The scope that is established whenever a new PowerShell session is started.

Group-Object. A Windows PowerShell cmdlet that groups the objects containing the same

property value.

If. A PowerShell statement that evaluates a comparison and then executes or skips the exe-

cution of a set of statements located in an associated code block.

Import-Alias. A Windows PowerShell cmdlet that imports an alias list.

Import-Clixml. A Windows PowerShell cmdlet that imports a Clixml file.

Import-Csv. A Windows PowerShell cmdlet that extracts data from a CSV list and passes

objects down the object pipeline.

Invoke-Expression. A Windows PowerShell cmdlet that executes a string as an expression.

Invoke-History. A Windows PowerShell cmdlet that executes a previously run command.

Invoke-Item. A Windows PowerShell cmdlet that invokes an executable or opens a file.

Join-Path. A Windows PowerShell cmdlet that combines path elements into a single path.

Local Scope. Refers to the current scope, which can be global, private, or script.

Logical Error. An error that occurs when a script produces unexpected results as the result

of faulty programming logic.

Loop. A set of programming statements that is repeatedly executed as a unit.

Measure-Command. A Windows PowerShell cmdlet that tracks the runtime for script blocks

or cmdlets.

Measure-Object. A Windows PowerShell cmdlet that measures different aspects of objects.

339Glossary

340

Method. A predefined collection of code that can be executed in order to interact with and

control its associated object.

Move-Item. A Windows PowerShell cmdlet that moves an item from one location to another.

Move-ItemProperty. A Windows PowerShell cmdlet that moves a property from one location

to another.

New-Alias. A Windows PowerShell cmdlet that creates a new cmdlet-alias pairing.

New-Item. A Windows PowerShell cmdlet that creates a new item in a namespace.

New-ItemProperty. A Windows PowerShell cmdlet that sets a new property for an item at a

specified location.

New-Object. A Windows PowerShell cmdlet that creates a new .NET object.

New-PSDrive. A Windows PowerShell cmdlet that sets up a new drive.

New-Service. A Windows PowerShell cmdlet that creates a new service.

New-TimeSpan. A Windows PowerShell cmdlet that creates a TimeSpan object.

New-Variable. A Windows PowerShell cmdlet that defines a new variable.

Non-terminating Error. An error that does not prevent the script from continuing its

execution.

Object. A self-contained resource that contains information about itself as well as the code

required to access and manipulate it.

Out-Default. A Windows PowerShell cmdlet that sets the default controller of output.

Out-File. A Windows PowerShell cmdlet that sends command output to a file.

Out-Host. A Windows PowerShell cmdlet that sends object pipeline data to the host.

Out-Null. A Windows PowerShell cmdlet that sends output to a null.

Out-Printer. A Windows PowerShell cmdlet that sends the output to the printer.

Out-String. A Windows PowerShell cmdlet that sends string output to the object pipeline.

Pipeline. A logical connection between two commands that supports the passage of one

command’s output to another command where it is received as input.

Pop-Location. A Windows PowerShell cmdlet that changes the current working location to

the location specified by the last entry added onto the stack.

Precedence. The order in which mathematic operations are executed.

Windows PowerShell Programming for the Absolute Beginner

Private Scope. A scope that is not visible or accessible to other scopes.

Properties. Object attributes that describe particular features of the object.

Provider. A model that provides Windows PowerShell with access to hierarchical reposito-

ries including the Windows file system and the Windows registry.

Pseudocode. A term used to describe an English-like outline of all or part of a script or appli-

cation.

Push-Location. A Windows PowerShell cmdlet that pushes a location onto the stack.

Read-Host. A Windows PowerShell cmdlet that collects a line of input from the host console.

Registry. A Windows repository that stores configuration data for the operating system as

well as for hardware, software, network, and user settings.

Registry Key. Logical containers used to store registry keys and values.

Regular Expression. A pattern used to describe matching data.

Remove-Item. A Windows PowerShell cmdlet that calls a provider to remove an item.

Remove-ItemProperty. A Windows PowerShell cmdlet that removes a property and its value

from the specified location.

Remove-PSDrive. A Windows PowerShell cmdlet that removes a drive.

Remove-PSSnapIn. A Windows PowerShell cmdlet that removes PSSnapIns from the current

console.

Remove-Variable. A Windows PowerShell cmdlet that deletes a variable and its value.

Rename-Item. A Windows PowerShell cmdlet that changes an item’s name.

Rename-ItemProperty. A Windows PowerShell cmdlet that renames a property.

Reserved Word. A keyword that Windows PowerShell has predefined as having a special

purpose.

Resolve-Path. A Windows PowerShell cmdlet that resolves the wildcard characters in a path.

Restart-Service. A Windows PowerShell cmdlet that restarts a service that has been stopped.

Resume-Service. A Windows PowerShell cmdlet that resumes a service that has been sus-

pended.

Runtime Error. An error that occurs when a script attempts to perform an illegal action

such as the division of a number by zero.

341Glossary

342

Script Scope. The scope that is established whenever a script is executed and which ends

when the script stops executing.

Select-Object. A Windows PowerShell cmdlet that selects objects based on parameters spec-

ified in the command string.

Select-String. A Windows PowerShell cmdlet that searches through strings or files for

matching patterns.

Set-Acl. A Windows PowerShell cmdlet that sets Access Control List properties.

Set-Alias. A Windows PowerShell cmdlet that maps an alias to a cmdlet.

Set-AuthenticodeSignature. A Windows PowerShell cmdlet that places an authenticode

signature in a PowerShell script.

Set-Content. A Windows PowerShell cmdlet that sets the content in the item.

Set-Date. A Windows PowerShell cmdlet that sets the system time.

Set-ExecutionPolicy. A Windows PowerShell cmdlet that establishes execution policy.

Set-Item. A Windows PowerShell cmdlet that sets the value of a pathname within a provider

to a specified value.

Set-ItemProperty. A Windows PowerShell cmdlet that sets a property to a specified value.

Set-Location. A Windows PowerShell cmdlet that sets the current working location.

Set-PSDebug. A Windows PowerShell cmdlet that turns on PowerShell’s script debugging

features.

Set-Service. A Windows PowerShell cmdlet that makes changes to service properties.

Set-TraceSource. A Windows PowerShell cmdlet that modifies options and trace listeners

from the specified trace source instance.

Set-Variable. A Windows PowerShell cmdlet that assigns a value to a variable or creates a

variable if it does not exist.

Sort-Object. A Windows PowerShell cmdlet that sorts the input objects based on property

values.

Special Variables. A collection of variables created and managed by Windows PowerShell

that provide access to commonly used information.

Split-Path. A Windows PowerShell cmdlet that streams a string with the qualifier, parent

path, or leaf item.

Windows PowerShell Programming for the Absolute Beginner

Start-Service. A Windows PowerShell cmdlet that starts a service that has been stopped.

Start-Sleep. A Windows PowerShell cmdlet that suspends shell, script, or runspace activity

for the specified amount of time.

Start-Transcript. A Windows PowerShell cmdlet that starts a transcript for a command shell

session.

Stop-Process. A Windows PowerShell cmdlet that stops an active process.

Stop-Service. A Windows PowerShell cmdlet that stops an active service.

Stop-Transcript. A Windows PowerShell cmdlet that stops the transcription process.

Subclass. A class that inherits base object definitions from its parent class and includes its

own modifications.

Suspend-Service. A Windows PowerShell cmdlet that suspends an active service.

Switch. A statement used to define a collection of different test and code blocks, each of

which evaluates against the same expression.

Syntactical Error. An error that occurs as a result of not following the syntax requirements

of the PowerShell scripting language.

Tab Completion. An editing feature that enables you to type a part of a command and then

to press the Tab key to obtain assistance in filling out the rest of the command.

Tee-Object. A Windows PowerShell cmdlet that sends input objects to two different places.

Terminating Error. An error that halts the execution of a PowerShell script.

Test-Path. A Windows PowerShell cmdlet that returns True if a path exists and False if it

does not.

Trace-Command. A Windows PowerShell cmdlet that enables the tracing of a trace source

instance.

Trace. The process of tracing the execution of script statements when executing a script.

Trap Handler. A collection of statements that are executed when an exception occurs.

Update-FormatData. A Windows PowerShell cmdlet that modifies format data files.

Update-TypeData. A Windows PowerShell cmdlet that updates the types.ps1xml file.

Values. Containers in which actual data is stored in the Windows registry.

Variable. A reference to data that is stored in memory.

343Glossary

344

Where-Object. A Windows PowerShell cmdlet that filters the input from the object pipeline.

While. A PowerShell statement that iterates as long as a specified condition is True.

WMI (Microsoft’s Windows Management Instrumentation). A system management inter-

face designed to facilitate access to system information.

Write-Debug. A Windows PowerShell cmdlet that writes debug messages.

Write-Error. A Windows PowerShell cmdlet that creates an error object and passes it

through the object pipeline.

Write-Host. A Windows PowerShell cmdlet that displays object data.

Write-Output. A Windows PowerShell cmdlet that adds an object to the object pipeline.

Write-Progress. A Windows PowerShell cmdlet that sends progress records to the host.

Write-Verbose. A Windows PowerShell cmdlet that writes a string to the host’s verbose

display.

Write-Warning. A Windows PowerShell cmdlet that writes warning messages.

XML. A markup language that facilitates the definition, storage, and transmission of data

between applications.

Windows PowerShell Programming for the Absolute Beginner

Symbols
+ (addition) operator, 110

/ (division) operator, 110

$ metacharacter, 230

* metacharacter, 230

? metacharacter, 230

\ metacharacter, 230

^ metacharacter, 230

% (modulus) operator, 110

* (multiplication) operator, 110

| (pipe) character, 82–83

- (subtraction) operator, 110

* (wild card character), 19

? (wild card character), 19

A
ac alias, 84

action arguments, error, 307–311

Add-Content cmdlet, 76

Add-History cmdlet, 76

addition (+) operator, 110

Add-Member cmdlet, 76

Add-Numbers function, 205

Add-PSSnapIn cmdlet, 76

alert escape character, 105

aliases

cmdlet, 14

hierarchical data stores, 47

list of, 85–86

allsigned security level, 12

arguments

assigning default values to, 202–203

comma-separated lists, 73

data type specification, 201–202

passing, 198–200

processing, 198–200

arithmetic operators, 110

arrays

associative

contents, removing, 120

creation, 118

data stored in, accessing, 118–119

key-value pair, deleting, 120

populating, 119–120

combining, 117

creation, 115

defined, 114

element values, modifying, 116

elements, deleting and inserting,

117–118

support, PowerShell versus cmd.exe, 10

tracking size of, 116

asnp alias, 84

associative arrays

contents, removing, 120

creation, 118

data stored in, accessing, 118–119

key-value pair, deleting, 120

populating, 119–120

author website, 334

B
background color, command console, 42

backspace escape character, 105

beginning of game prompt, Knock Knock

joke game, 23

BIOS information retrieval, 277

Blackjack card game

computer hand operations, 293–294

deal hand operations, 292–293

gameplay control, 292

new card functions, 297

new game prompts, 297–298

new script creation, 288–289

permissions, 289–291

Index

Blackjack card game (continued)

player hand operations, 295–297

project preview, 266–268

random number generation, 293

results, analyzing, 294–295

variables, defining and creating, 289

blogs, as resource, 333–334

break keyword, 103

break statement, 176–177

C
carriage return escape character, 105

case-sensitive pattern matching, 228–229

-ceq (equal to) operator, 149

certificates, hierarchical data stores, 47

-cge (greater than or equal to) operator, 149

-cgt (greater than) operator, 149

character strings, repeating, 106

child class, 8

class library, .NET Framework, 8

classes, .NET Framework, 70, 281

clc alias, 84

-cle (less than or equal to) operator, 149

clear command, 23

Clear method, 120

Clear-Content cmdlet, 76, 245

Clear-Host cmdlet, 23, 53, 88

Clear-Item cmdlet, 76

Clear-ItemProperty cmdlet, 76

Clear-Variable cmdlet, 76

cli alias, 85

closing screen, Fortune Teller game

example, 93–94

clp alias, 85

CLR (common language runtime), 70

cls command, 23

-clt (less than) operator, 149

clv alias, 85

cmd.exe versus PowerShell, 9–10

cmdlets

aliases, 14, 84–86

Clear-Content, 245

Clear-Host, 23, 53, 88

confirmation, 12

execution, 13–15, 75

Export-Clixml, 245–246

Export-Csv, 247

Format-List, 240–242

Format-Table, 19, 242–244

Get-ChildItem, 14–15, 49, 70–72, 83

Get-Command, 16

Get-Content, 237–238, 244–245

Get-EventLog, 274

Get-Help, 81

Get-History, 46–47

Get-Member, 71

Get-Process, 16–19, 138, 269

Get-PSDriver, 48

Get-PSProvider, 48

Get-Service, 245, 270, 272

Import-Csv, 248

Invoke-History, 47

list of, 76–80

naming syntax, 13

New-Item, 239

Out-File, 240

Out-Printer, 249

Read-Host, 13, 23, 56, 89, 153

Remove-Item, 236

Rename-Item, 237

Restart-Service, 270

Resume-Service, 270

Select-Object, 73–74

Select-String, 237, 241

Set-Content, 239–240

Set-Location, 49, 203

Set-PSDebug, 313

Set-Service, 270

Sort-Object, 83

Start-Service, 270

Start-Sleep, 24

Stop-Process, 269

Stop-Service, 270

Suspend-Service, 270

Where-Object, 83–84, 203, 272

Write-Host, 56, 62, 68, 81, 89, 103, 206

Write-Output, 24

-cne (not equal to) operator, 149

code block, 139

collections, foreach loops, 172

color attributes, command console, 41–42

COM (Component Object Model), 281–283

combining arrays, 117

346 Windows PowerShell Programming for the Absolute Beginner

command console

clearing, 23

color attributes, 41–42

command history, 39

cursor size, 38

customization options, 38–42

display options, 39

edit options, 39

editing features, 43

font attributes, 39–40

height settings, 40

Insert mode, 39

layout changes, 40–41

QuickEdit mode, 39

screen buffer size, 40

width settings, 40

Windows position, 41

windows size, 40–41

command history, Windows command

console, 39

command shell

improvements to, 7–8

overview, 7

command-lets. See cmdlets

commands. See also methods; objects

clear, 23

cls, 23

executable files, 16

exit, 178

comma-separated lists, arguments, 73

comma-separated values

reading data from, 248–249

saving data as, 247–248

common language runtime (CLR), 70

companion website, 325–326

Compare-Object cmdlet, 76

comparison operators, 146–147

compiling, CLR and, 70

Component Object Model (COM), 281–283

concatenation, 105–106

conditional logic

if statement

alternatives to, 141

data comparison, 139

different conditions, testing, 142–143

else statement and, 141

formulation, 139–140

multiline, 141

nesting, 143–144

single line, 141

overview, 133

switch statement, 144–146

conditions, 167, 175

configuring PowerShell, 10–12

confirmation, cmdlets, 12

continue keyword, 103

continue statement, 177–178

Control+Left edit feature, command

console, 43

Control+Right edit feature, command

console, 43

Convert-Path cmdlet, 76

ConvertTo-Html cmdlet, 76

ConvertTo-SecureString cmdlet, 76

copying files/folders, 235

Copy-Item cmdlet, 76

Copy-ItemProperty cmdlet, 76

copyright information, 35

CovertFrom-SecureString cmdlet, 76

cpi alias, 85

cpp alias, 85

cursor size, Windows command console, 38

custom created functions, 210–211

customization options, Windows

command console, 38–42

cvpa alias, 85

D
data comparison, if statement, 139

data output, saving as HTML, 245

data, storing and retrieving, 107

data types

list of, 202

specification, 201–202

debugging

cmdlets for, 313–316

discussed, 301

errors

action arguments, 307–311

logical, 305

messages, 306

runtime, 304–305

syntax, 303–304

347Index

debugging (continued)

terminating versus non-terminating,

306

trap handlers, 309

output status information, 311–312

Set-PSDebug, 313

variable values, tracking, 311–312

deleting

array elements, 117–118

files/folders, 236

diff alias, 85

display options, Windows command

console, 39

division (/) operator, 110

do keyword, 103

do until loops, 168–169

do while loops, 167

double quote escape character, 105

Down Arrow edit feature, command

console, 43

E
edit options, command console, 39

editing features

command console, 43

Get-History cmdlet, 46–47

tab completion, 44–46

elements, foreach loops, 172

else keyword, 103

else statement, 141

elseif keyword, 103

elseif statement, 143

End edit feature, command console, 43

end of game determination, Hangman

game, 217–218

endless loops, 168

Env drive, 49

environment variables, hierarchical data

stores, 47

epal alias, 85

epcsv alias, 85

-eq (equal to) operator, 147

equal to (-ceg) operator, 149

equal to (-eq) operator, 147

equal to (-ieg) operator, 149

errors

action arguments, 307–311

logical, 305

messages, 306

runtime, 304–305

syntax, 303–304

terminating versus non-terminating, 306

trap handlers, 309

escape characters, 103–105

event logs, system administration, 274–276

exception handling

CLR and, 70

PowerShell versus cmd.exe, 10

executable files, 16

execution, cmdlets, 13–15, 75

execution policy, 12

exit command, 178

Export-Alias cmdlet, 76

Export-Clixml cmdlet, 76, 245–246

Export-Console cmdlet, 76

Export-Csv cmdlet, 76, 247

expressions, assigning variables values

using, 110

F
fc alias, 85

files

comma-separated values

reading data from, 248–249

saving data as, 247–248

copying, 235

creating, 238–239

data output, saving as HTML, 245

deleting, 236

erasing contents of, 245

information retrieval, 234–235

moving, 235–236

renaming, 237

searching, 237–238

text files

reading from, 244–245

writing to, 239–240

verifying existence of, 233–234

XML

reading data from, 247

saving data as, 245–246

348 Windows PowerShell Programming for the Absolute Beginner

filter keyword, 103

filters

defined, 195

replacing functions with, 207–208

fl alias, 85

folders

copying, 235

creating, 238–239

deleting, 236

information retrieval, 234–235

moving, 235–236

renaming, 237

verifying existence of, 233–234

font attributes, command console, 39–40

for loops

array contents processing, 171

conditions, 169

data returned processes, 173–174

flexibility in, 170

initialization, 169

support, 169

foreach alias, 85

foreach keyword, 103

foreach loops, 172

ForEach-Object cmdlet, 76

form feed escape character, 105

Format-Custom cmdlet, 76

Format-List cmdlet, 76, 240–242

Format-Table cmdlet, 19, 76, 242–244

Format-Wide cmdlet, 76

Fortune Teller game

closing screen, 93–94

game design, 87–88

game instructions, 90

gameplay control, 91–93

new script creation, 88

project preview, 64–66

variables, declaring and initializing, 88

welcome screen, displaying, 89

ft alias, 85

function keyword, 103

functions

Add-Numbers, 205

arguments

assigning default values to, 202–203

data type specification, 201–202

passing, 198–200

processing, 198–200

custom created, 210–211

defined, 195

Get-FileNames, 203

Get-UserName, 205–206

incoming data, processing, 203–204

overview, 191

PowerShell versus cmd.exe, 10

replacing with filters, 207–208

results, returning, 204–205

reusable code, 195–196

script organization, improving, 195

structure of, 196–197

variable scope, restricting, 205–207

fw alias, 85

G
gal alias, 85

game design

Fortune Teller game, 87–88, 91–93

Game Console game, 316–317

Guess My Number game, 150

Knock Knock joke game, 22

Rock, Paper, Scissors game, 179–180

Seinfeld Trivia Quiz, 121

Tic-Tac-Toe, 250

game instructions

Fortune Teller game, 90

Seinfeld Trivia Quiz game, 123–127

games

Blackjack

computer hand operations, 293–294

deal hand operations, 292–293

gameplay control, 292

new card functions, 297

new game prompts, 297–298

new script creation, 288–289

permissions, 289–291

player hand operations, 295–297

project preview, 266–268

random number generation, 293

results, analyzing, 294–295

variables, defining and creating, 289

349Index

games (continued)

Fortune Teller

closing screen, 93–94

game design, 87–88

game instructions, 90

new script creation, 88

project preview, 64–66

variables, declaring and initializing, 88

welcome screen, displaying, 89

Game Console

final result, 322

game design, 316–317

game listing functions, 318

menu items, 319–320

new script creation, 317

project preview, 302

variables, defining and initializing,

317–318

Guess My Number

clearing screen, 157

final result, 157–161

game design, 150

gameplay control, 152

new script creation, 150–151

pipelines and operators, combining,

137–138

play again prompt, 155–156

player guesses, analyzing, 153

player input, analyzing, 154–155

player input, collecting, 153

player response, 156–157

project preview, 134–136

random number generation, 152–153

statistics, displaying, 155

value comparison, 136–137

variables, defining and initializing, 151

welcome screen, displaying, 152

Hangman

end of game determination, 217–218

functions, creating custom, 210–211

gameplay control, 213

guess results, 216–217

new script creation, 209

overall construction, 208

play game again prompts, 219–220

project preview, 192–194

secret word selection, 213–214

start of game prompts, 212–213

user guess process, 214

user input, collecting and validating,

214–216

variables, defining and initializing,

209–210

Knock Knock joke

beginning of game prompt, 23

final result, 26–28

game and author information display,

26

game design, 22

new script creation, 22–23

pausing between jokes, 24

project preview, 4–6

punch line, 24

second joke, 25

set-up line, 24

third joke, 25–26

Rock, Paper, Scissors

computer move, generating, 182

final result, 188

game design, 179–180

gameplay control, 181–182

gameplay results, analyzing, 185–186

new round of play, 187

new script creation, 180

player moves, prompting, 182–183

player moves, translating, 184

player moves, validating, 183–184

project preview, 164–166

random number generation, 182

statistics, displaying, 187–188

variables, defining and initializing,

180–181

welcome screen, displaying, 181

Seinfeld Trivia Quiz

end of quiz script, 131

final result, 131

first quiz question, 124–125

game design, 121

instructions, displaying, 123–124

new script creation, 121–122

player answers, analyzing, 128

project preview, 100–102

quiz complete display, 128

ranking, 129–130

welcome screen, displaying, 123

350 Windows PowerShell Programming for the Absolute Beginner

The Story of Three Amigos

additional inputs, collecting, 57–58

discussed, 52

introduction, displaying, 54–55

new script creation, 53

opening of story, displaying, 58–59

player input, prompting, 56

player instructions, 55–56

project preview, 32–35

remainder of story, displaying, 59–62

script variable declaration, 54

Tic-Tac-Toe

check results functions, 256–257

clear board function, 252

final result, 263

game board, clearing, 258

game design, 250

gameplay control, 259

moves, validating, 255–256

new game prompt, 252–254, 262–263

new script creation, 251

player moves, collecting, 259

player moves, validating, 259–260

player turn prompt, 254

project preview, 226–227

results prompt, 257–258, 260–261

switching between players, 262

tie between players, determining,

261–262

variables, defining and initializing,

251–252

gc alias, 85

gci alias, 85

gcm alias, 85

gdr alias, 85

-ge (greater than or equal to) operator, 147

Get-ACL cmdlet, 76

Get-Alias cmdlet, 76

Get-AuthenticodeSignature cmdlet, 77

Get-ChildItem cmdlet, 14–15, 49, 70–72, 77,

83

Get-Command cmdlet, 16, 77

Get-Content cmdlet, 77, 237–238, 244–245

Get-Credential cmdlet, 77

Get-Culture cmdlet, 77

Get-Date cmdlet, 77

Get-EventLog cmdlet, 77, 274

Get-ExecutionPolicy cmdlet, 77

Get-FileNames function, 203

Get-Help cmdlet, 77, 81

Get-History cmdlet, 46–47, 77

Get-Host cmdlet, 77

Get-Item cmdlet, 77

Get-ItemProperty cmdlet, 77

Get-Location cmdlet, 77

Get-Member cmdlet, 71, 77

Get-PfxCertificate cmdlet, 77

Get-Process cmdlet, 16–19, 77, 138, 269

Get-PSDrive cmdlet, 77

Get-PSDriver cmdlet, 48

Get-PSProvider cmdlet, 48, 77

Get-PSSnapIn, 77

Get-Service cmdlet, 77, 245, 270, 272

Getting Started Guide for the Windows

PowerShell (Microsoft Corporation),

330

Get-TraceSource cmdlet, 77

Get-UICulture cmdlet, 77

Get-Unique cmdlet, 77

Get-UserName function, 205–206

Get-Variable cmdlet, 77

Get-WmiObject cmdlet, 77

ghy alias, 85

gi alias, 85

gl alias, 85

global scope, 114

gm alias, 85

gp alias, 85

gps alias, 85

greater than (-cgt) operator, 149

greater than (-gt) operator, 147

greater than (-igt) operator, 149

greater than or equal to (-cge) operator, 149

greater than or equal to (-ge) operator, 147

greater than or equal to (-ige) operator, 149

group alias, 85

groupby property, 19

Group-Object cmdlet, 78

gsnp alias, 85

gsv alias, 85

-gt (greater than) operator, 147

gu alias, 86

351Index

Guess My Number game

clearing screen, 157

final result, 157–161

game design, 150

gameplay control, 152

new script creation, 150–151

pipelines and operators, combining,

137–138

play again prompt, 155–156

player guesses, analyzing, 153

player input, analyzing, 154–155

player input, collecting, 153

player response, 156–157

project preview, 134–136

random number generations, 152–153

statistics, displaying, 155

value comparison, 136–137

variables, defining and initializing, 151

welcome screen, displaying, 152

gv alias, 86

gwmi alias, 86

H
Hangman game

end of game determination, 217–218

functions, creating custom, 210–211

gameplay control, 213

guess results, 216–217

new script creation, 209

overall construction, 208

play game again prompts, 219–220

project preview, 192–194

secret word selection, 213–214

start of game prompts, 212–213

user guess process, 214

user input, collecting and validating,

214–216

variables, defining and initializing,

209–210

height settings, command console, 40

hierarchical data store navigation, 47–51

history

Get-History cmdlet, 46–47

Invoke-History cmdlet, 47

HKEY_CURRENT_USER registry key, 50–51, 284

HKEY_LOCAL_MACHINE registry key, 50, 284

Home edit feature, command console, 43

horizontal tab escape character, 105

HTML, saving data output as, 245

I
IDE (integrated development

environment), 328–329

-ieq (equal to) operator, 149

iex alias, 86

if keyword, 103, 130

if statement

alternatives to, 141

data comparison, 139

different conditions, testing, 142–143

else statement and, 141

formulation, 139–140

multiline, 141

nesting, 143–144

single line, 141

-ige (greater than or equal to) operator, 149

-igt (greater than) operator, 149

ihy alias, 86

ii alias, 86

-ile (less than or equal to) operator, 149

-ilt (less than) operator, 149

Import-Alias cmdlet, 78

Import-Clixml cmdlet, 78

Import-Csv cmdlet, 78, 248

in keyword, 103

incoming data, processing, 203–204

-ine (not equal) operator, 149

information retrieval, files/folder, 234–235

initialization, for loops, 169

Insert mode, command console, 39

insertion, array elements, 117–118

installing PowerShell, 10–12

integrated development environment

(IDE), 328–329

interpolation, variable, 109–110

introduction, The Story of Three Amigos

game example, 54–55

Invoke-Expression cmdlet, 78

Invoke-History cmdlet, 47, 78

Invoke-Item cmdlet, 78

ipal alias, 86

ipcsv alias, 86

352 Windows PowerShell Programming for the Absolute Beginner

J–K
Join-Path cmdlet, 78

keywords

how to use, 10

if, 130

list of, 103

param, 199

Knock Knock joke game

beginning of game prompt, 23

final result, 26–28

game and author information display, 26

game design, 22

new script creation, 22–23

pausing between jokes, 24

project preview, 4–6

punch line, 24

second joke, 25

set-up line, 24

third joke, 25–26

L
layout, command console, 40–41

-le (less than or equal to) operator, 147

less than (-clt) operator, 149

less than (-ilt) operator, 149

less than (-lt) operator, 147

less than or equal to (-cle) operator, 149

less than or equal to (-ile) operator, 149

less than or equal to (-le) operator, 147

listing and stopping processes, system

administration, 268–269

local scope, 114

logical errors, 305

logical operators, 147–148

loops

for

array contents processing, 171

conditions, 169

data returned processes, 173–174

flexibility in, 170

initialization, 169

support, 169

break statement, 176–177

continue statement, 177–178

defined, 166

do until, 168–169

do while, 167

endless, 168

execution, altering, 176

foreach, 172

overview, 163

types of, 166

while, 23, 56, 93, 152, 155, 175

-lt (less than) operator, 147

M
Measure-Command cmdlet, 78

Measure-Object cmdlet, 78

memory management, CLR and, 70

menu items, Game Console, 319–320

messages, error, 306

metacharacters, 229–230

methods. See also commands; objects

Clear, 120

defined, 8

Next, 152

Stop, 153

ToLower(), 45–46

mi alias, 86

Microsoft TechNet Script Center website,

331

minimum system requirements,

PowerShell installation, 10–12

modulus (*) operator, 110

Move-Item cmdlet, 78

Move-ItemProperty cmdlet, 78

moving files/folders, 235

mp alias, 86

multiline if statements, 141

multiplication (*) operator, 110

N
nal alias, 86

naming syntax, cmdlets, 13

naming variables, 108

navigation, hierarchical data store, 47–51

ndr alias, 86

-ne (not equal to) operator, 147

353Index

nesting if statements, 143–144

.NET Framework

class library, 8

classes, 70, 281

CLR (common language runtime), 70

components, 69

integration with, 8–9

objects, 70

resources, accessing, 70–75

structured data, 69–70

support, 68

networking data retrieval, 279

New-Alias cmdlet, 78

New-Item cmdlet, 78, 239

New-ItemProperty cmdlet, 78

newline escape character, 105

New-Object cmdlet, 78

New-PSDrive cmdlet, 78

New-Service cmdlet, 78

newsgroups, as resource, 332

New-TimeSpan cmdlet, 78

New-Variable cmdlet, 78

Next method, 152

ni alias, 86

not equal (-ine) operator, 149

not equal to (-cne) operator, 149

not equal to (-ne) operator, 147

null escape character, 105

nv alias, 86

O
object piping, 19

object-based scripting language, 9, 63

objects. See also commands; methods

basic understanding of, 9

COM (Component Object Model), 281–283

defined, 8

.NET Framework, 70

properties of, 8

oh alias, 86

online resources, 330–334

Out-Default cmdlet, 78

Out-File cmdlet, 78, 240

Out-Host cmdlet, 78

Out-Null cmdlet, 78

Out-Printer cmdlet, 78, 249

output status information, 311–312

Out-String cmdlet, 78

P
Page Down edit feature, command console,

43

Page Up edit feature, command console, 43

param keyword, 199

parameters

position, 18

Process-Name, 17–18

parent class, 8

passing arguments, 198–200

pattern matching, 19

alternative patterns, 229

case-sensitive, 228–229

range-based, 231–233

simple, 228–229

pipe (|) character, 10, 82–83

play again prompt, Guess My Number

game example, 155–156

player instructions, The Story of Three

Amigos, 55–56

player response, Guess My Number game

example, 156–157

player turn prompt, Tic-Tac-Toe game

example, 254

Pop-Location cmdlet, 78

positional parameters, 18

positioning Windows command console, 41

PowerShell

Analyzer features, 329

cmd.exe versus, 9–10

execution policy, 12

features, 7

Information Centre, 331

installing and configuring, 10–12

precedence, variable, 110–111

printing operations, 249–250

private scope, 114

processes, listing and stopping, 268–269

Process-Name parameter, 17–18

project preview

Blackjack card game, 266–268

Fortune Teller game, 64–66

Game Console game, 302

354 Windows PowerShell Programming for the Absolute Beginner

Guess My Number game, 134–136

Hangman game, 192–194

Knock Knock joke game, 4–6

Rock, Paper, Scissors game, 164–166

Seinfeld Trivia Quiz game, 100–102

The Story of Three Amigos, 32–35

Tic-Tac-Toe game, 226–227

properties

defined, 8

groupby, 19

pseudocode, 140

punch line, Knock Knock joke game, 24

Push-Location cmdlet, 78

Q
quantifiers, regular expression, 231

QuickEdit mode, command console, 39

R
random number generation

Blackjack card game example, 293

Guess My Number game example,

152–153

Rock, Paper, Scissors game example, 182

range-based pattern matching, 231–233

rdr alias, 86

Read-Host cmdlet, 13, 23, 56, 79, 89, 153

reading from comma-separated values,

248–249

reading from text files, 244–245

reading from XML files, 247

Regedit utility, 285

registry

hierarchical data stores, 47

HKEY_CURRENT_USER registry key,

50–51, 284

HKEY_LOCAL_MACHINE registry key, 50,

284

Regedit utility, 285

system administration, 284–287

regular expressions

metacharacters, 229–230

pattern matching

alternative patterns, 229

case-sensitive, 228–229

range-based, 231–233

simple, 228–229

PowerShell versus cmd.exe, 10

quantifiers, 231

remotesigned security level, 12

Remove-Item cmdlet, 79, 236

Remove-ItemProperty cmdlet, 79

Remove-PSDrive cmdlet, 79

Remove-PSSnapIn cmdlet, 79

Remove-Variable cmdlet, 79

Rename-Item cmdlet, 79, 237

Rename-ItemProperty cmdlet, 79

renaming files/folders, 237

repeating character strings, 106

reserved words

how to use, 102

list of, 103

Resolve-Path cmdlet, 79

resources

blogs, 333–334

Microsoft TechNet Script Center website,

331

newsgroups, 332

online, 330–334

PowerShell Information Centre, 331

recommended reading, 329–330

Restart-Service cmdlet, 79, 270

results prompt, Tic-Tac-Toe game example,

257–258, 260–261

results, returning, 204–205

Resume-Service cmdlet, 79, 270

return keyword, 103

returned data processes, for loops, 173–174

reusable code, 195–196

ri alias, 86

rni alias, 86

rnp alias, 86

Rock, Paper, Scissors game

computer move, generating, 182

final result, 188

game design, 179–180

gameplay control, 181–182

gameplay results, analyzing, 185–186

new round of play, 187

new script creation, 180

player moves, prompting, 182–183

player moves, translating, 184

355Index

Rock, Paper, Scissors game (continued)

player moves, validating, 183–184

project preview, 164–166

random number generation, 182

statistics, displaying, 187–188

variables, defining and initializing,

180–181

welcome screen, displaying, 181

running scripts, 20–21

runtime errors, 304–305

S
saving

data

as comma-separated values, 247–248

as XML file, 245–246

scope, variable, 114

screen buffer size, command console, 40

script organization, improving, 195

script scope, 114

script signing, PowerShell versus cmd.exe, 10

script-level variables, 205

scripts

running, 20–21

storage, 21

support for, 20

variable declaration, 54

searching files, 237–238

secret word selection, Hangman game

example, 213–214

security

allsigned level, 12

CLR and, 70

remotesigned level, 12

unrestricted level, 12

Seinfeld Trivia Quiz game

end of quiz script, 131

final result, 131

first quiz question, 124–125

game design, 121

instructions, displaying, 123–124

new script creation, 121–122

player answers, analyzing, 128

project preview, 100–102

quiz complete display, 128

ranking, 129–130

remaining quiz questions, 125–127

variables, defining and initializing,

122–123

welcome screen, displaying, 123

Select-Object cmdlet, 73–74, 79

Select-String cmdlet, 79, 237, 241

sessions, starting, 13, 35–38

Set-ACL cmdlet, 79

Set-Alias cmdlet, 79

Set-AuthenticodeSignature cmdlet, 79

Set-Content cmdlet, 79, 239–240

Set-Date cmdlet, 79

Set-ExecutionPolicy cmdlet, 79

Set-Item cmdlet, 79

Set-ItemProperty cmdlet, 79

Set-Location cmdlets, 49, 79, 203

Set-PSDebug cmdlet, 79, 313

Set-Service cmdlet, 79, 270

Set-TraceSource cmdlet, 79

Set-Variable cmdlet, 79

shortcuts, session startup, 36–38

single line if statements, 141

single quote escape character, 105

size of arrays, tracking, 116

Sort-Object cmdlet, 80, 83

special variables, 113

Split-Path cmdlet, 80

start of game prompts, Hangman game

example, 212–213

starting PowerShell sessions, 13, 35–38

Start-Service cmdlet, 80, 270

Start-Sleep cmdlets, 24, 80

Start-Transcript cmdlet, 80

statements

break, 176–177

continue, 177–178

else, 141

elseif, 143

if

alternatives to, 141

data comparison, 139

difference conditions, testing, 142–143

else statement and, 141

formulation, 139–140

multiline, 141

356 Windows PowerShell Programming for the Absolute Beginner

nesting, 143–144

single line, 141

switch, 144–146

statistics, displaying

Guess My Number game example, 155

Rock, Paper, Scissors game, 187–188

Stop method, 153

stopping processes, system administration,

268–269

Stop-Process cmdlet, 80, 269

Stop-Service cmdlet, 80, 270

Stop-Transcript cmdlet, 80

storing and retrieving data, 107

string comparison operators, 148–149

string manipulation

concatenation, 105–106

repeating character strings, 106

replacing parts of strings, 107

structured data, .NET Framework, 69–70

subtraction (-) operator, 110

support

.NET Framework, 68

script, 20

Suspend-Service cmdlet, 80, 270

switch keyword, 103

switch statement, 144–146

syntax errors, 303–304

system administration. See also WMI

COM objects, 281–283

event logs, 274–276

.NET classes, 281

overview, 265

processes, listing and stopping, 268–269

registry interaction, 284–287

Windows services, administering, 269–274

system requirements, PowerShell

installation, 10–12

T
tab completion

advantages of, 45

how to use, 44–46

PowerShell versus cmd.exe, 10

tables, Format-Table cmdlet, 19

tech-publishing website, 334

Tee-Object cmdlet, 80

terminating versus non-terminating

errors, 306

text colors, command console, 42

text files

reading from, 244–245

writing to, 239–240

The Story of Three Amigos

additional inputs, collecting, 57–58

discussed, 52

introduction, displaying, 54–55

new script creation, 53

opening of story, displaying, 58–59

player input, prompting, 56

player instructions, 55–56

project preview, 32–35

remainder of story, displaying, 59–62

script variable declaration, 54

Tic-Tac-Toe game

check results function, 256–257

clear board function, 252

final result, 263

game board, clearing, 258

game design, 250

gameplay control, 259

moves, validating, 255–256

new game prompt, 252–254, 262–263

new script creation, 251

player moves, collecting, 259

player moves, validating, 259–260

player turn prompt, 254

project preview, 226–227

results prompt, 257–258, 260–261

switching between players, 262

tie between players, determining, 261–262

variables, defining and initializing,

251–252

ToLower() method, 45–46

Trace-Command cmdlet, 80

trap handlers, 309

U
unrestricted security level, 12

until keyword, 103

Up Arrow edit feature, command console, 43

Update-FormatData cmdlet, 80

Update-TypeData cmdlet, 80

utility programs, 7

357Index

V
value comparison, Guess My Number game,

136–137

variable scope, restricting, 205–207

variables

assignment operators, 111–112

declaring and initializing

Blackjack card game, 289

Fortune Teller game, 88

Game Console game, 317–318

Guess My Number game, 151

Hangman game, 209–210

Rock, Paper, Scissors game, 180–181

Seinfeld Trivia Quiz game, 122–123

Tic-Tac-Toe game, 251–252

defined, 107

defining and initializing, 109

global scope, 114

hierarchical data stores, 47

interpolation, 109–110

local scope, 114

naming, 108

precedence, 110–111

private scope, 114

scope, 114

script-level, 205

special, 113

value assignment, using expressions, 110

values, tracking, 311–312

vertical tab escape character, 105

W
welcome screen, displaying

Fortune Teller game, 89

Guess My Number game, 152

Rock, Paper, Scissors game, 181

Seinfeld Trivia game, 123

where keyword, 103

Where-Object cmdlet, 80, 83–84, 203, 272

while keyword, 103

while loop, 23, 56, 93, 152, 155, 175

width settings, command console, 40

wild card characters, 19

Windows command console. See command

console

Windows Management Instrumentation.

See WMI

Windows PowerShell (PS) User Guide

(Microsoft Corporation), 330

Windows services, system administration,

269–274

windows size, command console, 40–41

WMI (Windows Management

Instrumentation). See also system

administration

BIOS information retrieval, 277

data, pulling from remote computers,

280–281

discussed, 276

networking data retrieval, 279

Write-Debug cmdlet, 80

Write-Error cmdlet, 80

Write-Host cmdlet, 56, 62, 68, 80–81, 89, 103,

206

Write-Output cmdlet, 24, 80

Write-Progress cmdlet, 80

Write-Verbose cmdlet, 80

Write-Warning cmdlet, 80

writing to text files, 239–240

X
XML files

reading data from, 247

saving data as, 245–246

358 Windows PowerShell Programming for the Absolute Beginner

